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Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory
and Monte Carlo simulations
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We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in
a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of
spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension
of the self-consistent-field theory for Gaussian chains, with the density variables evolving in time, and the
method of the external potential dynamics where the effective external fields are propagated in time. Different
wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal
decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that
maps the chains—in our case with 64 effective segments—on a coarse grained lattice. The results obtained
through self-consistent-field calculations and Monte Carlo simulations can be compared because the time,
length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension,
and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor
shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e.,
wave vector independent, kinetic factor. Including fluctuations in the self-consistent-field calculations leads to
a shorter time span of spinodal behavior and a reduction of the relaxation rate for smaller wave vectors and
prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in
agreement with the simulation results.
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[. INTRODUCTION Spinodal decomposition can be approximately described
through time dependent Ginzburg-Landau theory, also
Over many years the study of phase transitions in fluiknown as Cahn-Hilliard-Cook theor}@—11]. Many efforts
mixtures has become an important field because of their omhave been made to numerically calculate the time evolution
nipresent occurrence in nature and more importantly becaus# a mixture in the framework of this theofft2—14. These
of their technological meaning in creating new materialscalculations are appropriate to give a first insight into how
[1,2]: blending of different species can reduce cost, improveohase separation takes place, but are far from describing the
processibility, provide synergy between components, and akystem quantitatively well. Even though binary polymer
low for recycling. blends are an ideal testing bed for these approaches, earlier
Sophisticated analytical techniques—e.g., self-consistentvlonte Carlo simulation$§15-17 found rather pronounced
field theory [3—6] or polymer reference interaction site deviations from their predictions. To find a quantitatively
model theory[7]—exist for calculating the phase behavior better description, it is necessary to go beyond Ginzburg-
and detailed interfacial properties of polymer blends. Bedlandau theory. Self-consistent-field the¢8y6] (SCFT) has
cause of the large extension of polymer chains equilibriunproven to be one of the most successful descriptions of equi-
properties are well described, however, the analytical delibrium properties of polymer mixtures on a mean field level.
scription is much less satisfactory for the dynamics of mul-The idea to use SCFT to develop a dynamical mean field
ticomponent systems. theory is not new[18-21], but, although SCFT describes
The transition from a completely homogeneous mixture teequilibrium properties well, usually the influence of the
an equilibrated two phase system is a very long process coingle chain dynamics is neglected due to computational ex-
sisting of a sequence of highly inhomogeneous states. Mangenses, again leading to a more qualitative than quantitative
different methods to analyze this process have been appliatkscription of the phase separation. In most calculations a
including experiments, theory, and computational simulasimple constant Onsager coefficient is used that would be
tions. After quenching a polymer blend from the one phaseppropriate if the movement of the polymers were compa-
region deep into the two phase region spinodal decomposrable to the movement of point particles. Remembering the
tion takes place. Different time regimes are recognized dureonnectivity of polymers, it is not likely that this local cou-
ing spinodal decomposition. During early stages the amplipling is sufficient to lead to a quantitatively correct descrip-
tudes of the concentration fluctuations, that are amplified, argon of the dynamics, and other nonlocal Onsager coefficients
still so small that they do not interact with each other. Forhave been proposd@2—24.
later times the local composition reaches the equilibrium In this study we are interested in the early stages of spin-
value of the coexisting phases, and nonlinear interactionsdal decomposition in an incompressible symmetric binary
between the fluctuation modes become more and more inpolymer mixture after a quench from the one phase region to
portant. At even later stages hydrodynamics dominates thihe two phase region paying special attention to the differ-
coarsening8]. ences in the collective dynamics when the chains obey local
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and Rouse dynamics. We therefore employ two dynamicaln Sec. IV, results of our calculations and simulations are

versions of self-consistent-field theory for polymer mixtures.presented first showing the difference between the use of

The first method, referred to as dynamic self-consistent-fieldocal and nonlocal coupling, then comparing the mean field

theory[18,19 (DSCFT), uses the free energy functional of results with the simulations and finally analyzing the influ-

the SCFT for an incompressible mixture in terms of the locagence of random fluctuations. The paper finishes with a sum-

composition. This free energy functional leads to a kineticmary.

equation for the time dependent local composition that is

integrated numerically. This method has been applled for 1l. SELF-CONSISTENT-FIELD THEORY

studying the ordering kinetics in block copolymer and sur-

factant system§18,25. We use both a local and a nonlocal ~We consider an incompressible mixtureffndB poly-

Onsager transport coefficient, as is expected for polymergiers consisting oh polymers in a volume/=L,L,L, with

obeying Rouse dynamics. periodic boundary conditions. There arg polymers of kind
The underlying idea of the second method is to expresé in the system, forB polymersng=n—n,. In SCFT

the free energy of the investigated system only in terms of3,5,6,38 polymers are modeled as Gaussian chains with the

the effective external fields, which are thermodynamicallyend-to-end distancR,. In addition we choose tha andB

conjugated to the composition. This description leads to apolymers to both have the same number of mononhs

equation of motion for the effective external fields, which is=Ng=N and to be of the same architecture. The overall

integrated in time. Following Maurits and Fraafjg6] who  particle density in the system is denotedmsnN/V. The

derived a similar equation of motion neglecting random fluc-microscopic density}SA of the A monomers can be defined

tuations, we refer to this method as the external potentialhrough the polymer conformatiods,(7)},

dynamics (EPD), which has been shown to automatically

incorporate Rouse dynamics. N "1

. Thg aim of our study is to explore both_ methods and_to ba=— 2 dr 8(r—r; (7)), 1)

investigate the role of the Onsager coefficient. To decide pPir=1Jo A

whether our results resemble any “real” dynamics a com-

parison with results obtained through other methods is prefo< ;<1 parametrizes the contour of a chain. Bomono-

erable. Although many experiments have analyzed spinodlers a similar equation holdgAll the following equations

decomposition in binary polymer mixtures, only f§&7—  regarding onlyA monomers, are equivalently valid fd

29] have looked at early stages of demixing and the influence,onomers without mentioning this explicitlyRegarding a

of the Onsager coefficient. Another difficulty in comparing repulsion between the two kinds of polymers that is ex-

experimental results with our calculations lies in the fact thabressed through the Flory-Huggins parametethe canoni-
actual demixing is influenced by many factors, for example g partition function has the following form:

preparation of the probe, polydispersity, or strong dynamic

asymmetries dL:{e to djifferent glass transition temperatures of . na ne
the two specie§30,31. Therefore a quantitative mapping

between theory and experimental systems is difficult. To < nA!nB!j (i}__ll i!—:ll DLri JDLrigIPalti, JPal1i, ]
gain a quantitative insight we compare our mean field calcu-

lations with results obtained through Monte Carlo simula- < ext — fdgr ~
tions. No parameters have to be adjusted for this comparison. € P v Xbade
In the simulations we employ the bond fluctuation model

[32,33 that is well established for studying properties of
polymer melts. It has been shown that the equilibrium prop
erties of a polymer mixture as given by the self-consistent
field theory are almost quantitatively reproduced through
Monte Carlo simulations using the bond fluctuation model

3 [t
34,35, Palr]~ex —2—R§J0d7-

S(da+ ds—1). )

The functional integralD sums over all possible conforma-

tions of the chainsP,[r] is the so-called Wiener measure
dr\?
a_) : ©)
Our paper is organized in the following way. In Sec. Il we
introduce the self-consistent-field theory for a binary poly-
mer mixture, explaining how equilibrium properties can bewhich represents the statistical weight of a noninteracting
derived with this method. Then we introduce general aspect§aussian chain. Repulsive interactions at short interparticle
of the dynamics in a polymer mixture and show how theydistances reduce fluctuations of the total density. This is in-
can be incorporated in the SCFT leading to dynamic selfcorporated effectively via the incompressibility constraint
consistent-field theory. The following section presents anthat is expressed through ti&function in Eq.(2) [37].
other approach to including dynamics in SCFT regarding the This defines a system with many interacting polymer
effective external fields as the time dependent variable. Imehains; its partition function obviously cannot be analytically
plications regarding density fluctuations in this descriptionsolved. Inserting new auxiliary field variablds, , ®g, Wy,
are discussed in detail. Section Il serves as a brief introducand Wy via a Hubbard-Stratonovich transformation, we can
tion to the performed Monte Carlo simulations and explaingeformulate the many-polymer problem in terms of a single
how a direct comparison with SCFT calculations is possiblepolymer in external fields.
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Z"" J D@ADWADQBDWB 5((1)A+ (DB_ 1)

Xexp{ —F[Wy,Wg , @, ,Pg]/kgT}. (4)
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possible interactions of every polymer chain into account,
see Eq.(2), we have now found a mean field description of
the system in which it is sufficient to look at a single chain in
an effective external field.

To calculate the monomer densities it is useful to define

Thus we have found an expression for the canonical freghe end segment distributiaap(r,t), which gives the prob-
energy depending on the new variables and the single chaigyility to find the end of a chain with lengthat positionr

partition functionQ,,

FIWa,We P, D6l ¢apV Qn  depV Qs

KeT N "n, N Mng
Pl 3
) ErWada+ Weg)
Pl 3
+N Vd r)(N(I)Aq)B, (5)

$a=Nn,/pV denoting the average density of thepoly-
mers in the system and

)

1
QA:J D["A]PA[V]GXF{_JOdTWA(r(T))

being the partition function of a singkechain in the external

field W, .

A. Equilibrium

The functional integral in Eq(4) also cannot be calcu-
lated explicitly. Therefore we employ a saddle point approxi-
mation. This means that only the largest contribution to the

when exposed to a field, ,
qA(r,t)=f Dlr(t)]Palr(t)]8(r(t)—r)

Xexp{—jtdrwA(r(r)) ) (11
0

For this end segment distribution the following diffusion
equation hold$3]:

aqa(r,t) 1
Aﬁt =ER§V2qA(f,t)—WAQA(r,t), (12

with the boundary conditionga(r,0)=1. After finding a so-
lution to this equation the monomer density is immediately
given through the following expression:

=
¢Z(r)=—q:§ fdth(r,t)qA(r,l—t)- (13
A JO

The single chain partition function can be calculated with

Qa= Jvd3r aa(r,1). (14)

integrand is considered and the integration does not have to

be carried out. The saddle point approximation of &j.is
equivalent to the minimization of the free ener@®) with

After having presented all necessary equations to calculate
equilibrium properties of polymer mixtures, we are now in-

respect to the auxiliary variables. The values of the fields angerested in using this description for calculating the dynamics
densities at the saddle point are denoted by lower case letteifs a polymer mixture. Two ways to achieve this are intro-
and are given by the set of equations that has to be solveguced in the following sections.

self-consistently,

Al _ AV Qn_
WAWA—O, A__Q_AWA=¢A[WA]’ 7)
oF b8V Qs _ |
SWg WBZO' B~ 0, ow, velWel  ©®
oF SF| B
5, g, O WaTWemAN(emd. O

dat =1 (10)

The averages of the microscopic densities are given by
(da)= ¢k and(¢g)= ¢% . Equationg7) and(8) make clear

that in equilibrium the average microscopic densig,)

B. Dynamic self-consistent-field theory

Because of the fact that the concentrations of the poly-
mers are conserved the continuity equation is valid,

w-i—V-J(r,t):O, (15

J(r,t) denoting the current density of the monomers at posi-
tionr at timet. One now assumd®2-24 a linear relation
between the current density and the gradient of the exchange
potential u= SF/(8¢,) — SFI(S¢pg) (note that there is only
one independent chemical potential in the system because of
the incompressibility constraint

J(r,t):—fvdr’3A(r,r’)V,u(r’,t), (16)

actually equals the thermal average monomer density of with the kinetic coefficientA(r,r’) describing the connec-

single A chain in an external fielav, . In other words, after

tion between the force acting on the monomers through the

starting with a description where we would have to take allgradient of the chemical potential at positiohand the re-
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sulting current density at positian This describes a purely describes the canonical partition function depending upon
relaxational dynamics, effects due to hydrodynamic flow arghe variablesb,, ®g, W, , andWg that are independent of
not captured. The Onsager coefficiehtcan be modeled in €ach other. If we now employ a saddle point approximation
different ways. The simplest approach would be local couin the variablesw, and Wg we find Egs.(7) and (8) that
pling that results in the Onsager coefficient being propordescribe a unique relation between the fisldsandwg and
tional to the local density. Bearing in mind that polymersthe densitiesp, and ¢g. This means we can calculate the
have a certain extension it is clear that nonlocal couplinglensities explicitly with Eqs(12), (13), and(14) if the fields
should lead to a better description, although local coupling isva andwg are known. Therefore with this approximation the
often used in calculations of dynamic models based oiree energyF becomes a function that depends on the
Ginzburg-Landau type energy functionals for simplicity rea-densities (or fields only: F[¢a.dp . Wal dal,Wal dp]]
sons[12-14. In the Rouse model, forces acting on a mono-=F[ ¢, ¢g]. With this free energy it is now possible to
mer caused by the other monomers are also taken into acalculate the exchange potenta(r),

count [38,39. This leads to a kinetic factor that is

proportional to the pair-correlation functiof22—-24,28.
These two approaches lead to the following Onsager coeffi- il = OFL4alr) d5(r)] — OFL4alr). dg(r)]
cients: kgT Opa(r) og(r)
. 1
Ajoca(1) =DNea(r,t) ¢p(r,t)  (local coupling, = N{XN[¢>B(r)— da(n)]
17
— (Wa[ Pa(r)]—wg[ ¢p(r) D} (21

Arousd.T')=DNgadgPo(r,r’) (Rousg, (18)

D denoting the single chain diffusion constant &y({r,r’) ~ The simple form of diffusion equatiof20) and the diffu-

the pair-correlation function. The Rouse Onsager coefficien$ion equation for the end segment distribution of a polymer

written in Eq. (18) is only approximately valid, when the cham, Eq(12), suggests_the use of a Fourier expansion of all

pair-correlation function is the same for both polymer Spe_spatlally 'dependt'ent vanab[es for act'ual calculations because

cies. A more general expression is found in R&B]. the Fourier functions are eigenfunctions of the squared gra-
Another model for nonlocal coupling is the reptation dient V2. The following set of orthonormal functions is used

model [39,40 that is appropriate for polymer melts with in all our SCFT calculations:

very long chains, i.e., very entangled chains. Hereby the idea

is that a polymer chain is constrained by the other polymers fimn(T)=norm(|) norm(m) norm(n)
and is forced to move along the polymer tube axis. This

dynamics is expectef22—24 to also lead to an Onsager ><cos< 2l x) C0<27Tm ) cos{ 2mn z)
coefficient that is proportional to the pair-correlation func- L, Y

tion. Therefore the influence of single chain Rouse and rep-
tation dynamics on the collective dynamics of the system is
qualitatively comparable. Reptation shall not be regarded in
the further study.

X z

y

I,m,n=0,1,2...,

Equationg15) and(16) lead to the following diffusion \/E i £0
equation, the last term representing noise that obeys the nom(i):[ b (22
fluctuation-dissipation theorem, 1, i=0.
dPa(r,t) j 3 We have now found all necessar tions t i-
Ay "BA(r.r! " 1)+ ), (1 y equations to numeri
ot v vdr (LrOVar.D+ gy (19 cally calculate the time evolution of the densities in a binary

polymer mixture, leading us to the following procedure we
After the Fourier transformation this diffusion equation has arefer to as the DSCFT method. First we have a given density
simple form, profile at timet=0. As mentioned before, Eq§12), (13),
SA(0D) and (14) give us the possibility to explicitly calculate the
dPa(Q;t single chain densities for known external fields. Unfortu-
ot ~A@a?u(a,t+7(q.0). (20 nately the inversion is needed because we have given densi-
ties and have to find the matching external fields. This leads
These diffusion equations implicitly assume that the reto a set of nonlinear equations that are numerically solved
laxation time of the chain conformations is smaller than thethrough the Newton-Broyden methpdll]. After the external
time scale on which composition fluctuations evolve. Thefields, which “create” the given density profile, have been
chain conformations are expected to be “in equilibrium” found the exchange potentialis calculated via Eq21) and
with respect to the instantaneous spatially varying composithen inserted into the diffusion equati¢®0). The diffusion
tion. equation is subsequently integrated using a simplified
To use the introduced diffusion equati@t®) in the frame  Runge-Kutta method. This leads to a new given density after
of SCFT, let us return to the general expressidh that a discrete time step and the whole procedure starts anew.
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Apart from regarding local dynamics in our DSCFT cal- with

culations it is favorable to consider nonlocal coupling be-
cause this leads to a better description of the dynamics in a
polymer mixture. However, in DSCFT the difficulty in using
Rouse dynamics lies in the computational expense of calcu-
lating the pair-correlation function for each time step. As an
approximation during early stages of demixing the pair-
correlation function of a homogeneous melt, as it is given
through the random phase approximat{@&PA) [42], is used
leading to the following Onsager coefficient:

— — 2(x+e *-1)
A(Q):DN¢A¢BT, (23

PHYSICAL REVIEW B4 041804

GIUW] _ dapV, Qu(U+W)/2]
keT N N

_ depV, Qel(U-W)12]

N Ng
2
P oge | W1 XN
+NJvdr4XN Z(U 5| |- (26)

Alternatively, we could have started with the free energy
x is defined asx=RZ¢?/6 with R, denoting the end-to-end functional (4) and integrate out the Gaussian variableg
distance of a polymer. and ®g. So far no approximations have been used, but to

find an energy functional that only depends upliiwe now

employ a saddle point approximation with respect)to

C. External potential dynamics

In the previously introduced DSCFT method we needed a
way to reduce the number of independent variables in the
partition function. Through the saddle point approximation
in the fields we obtained a free energy functional in terms of
the densities. This, in turn, yields a Langevin equation for the
dynamics of the densities. For the EPD metta€] we are
looking for a way to express the dynamics of the binary

SG[U,W] . .
T|U*ZO- da(r)+g(r)=1. (27)

Here we use the definition, see Eq¥) and (8), ¢x=

polymer mixture through an equation of motion for the ex- ~ (#aV/Qa)(6Qa/6Wp). For ¢ the equivalent definition
ternal fieldsW, and Wg. Our starting point is again the applies. In equilibrium the field variable)=W,+Wg is

canonical partition functiori2). Via a Hubbard-Stratonovich conjugated to the overall density of the system, which is
transformation we introduce the field variabl&=W, constant in an incompressible mixture. We therefore believe

—W;g andU=W,+ W, and obtain that the influence of this approximation on the description of
the system through the fielV is very small. We shall dis-
cuss this in detail below.

1

ZN—
nalng!

ia=1ig=
<o)~ [ 3 (Dut B~ (s o7
X (ppt dp—1)

1 na  ng
—] ( [ 11 D[riA]D[riBJPA[riA]PB[nB])

na!ng!

ian=1ig=

xf DUDWex;{—pYTX}ex;{—%fvde’r{Vg(&A— bs)
W2 u. .

+4X—N] EXF{—%J'VCISI' E(¢A+¢B_1) . (24)

NA  Ng If we replaceU with the U* [ W] that fulfils this constraint
f H H D[riA]D[riB]PA[riA]PB[riB] we end up with a free energy functional that only depends on
1 the field variablew,

2

GIW(r)] pVx p [
S T KAy
_apV, QA(UTFW)2]

N Na

_ ¢epV, Qel(UT-W)2]

N Ng (28

where we have used the fact that adding a constant §i&dd

U* does not change the value 6{ W(r)]. We choset in
This defines a free energy functi@in terms of the fieldd)  such a way thaf, d*r U*=0.

andW,

A difficulty in describing the system with the order pa-

rameterW is the interpretation of the field fluctuations in
terms of the physical density fluctuations. We can calculate

z~f DUDW exp( — G[U,W]/kgT), (25)
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subscript EPD. To this end, we introduce a local exchange
potentialA ., which couples to the microscopic density dif- Z[ ]~

ferencedp— o,

IL H Dr; 1D[r; ]

ian=1ig=1

Zaul e (
XPA[riA]PB[riB])
Xexr{—ﬁfvd‘"’r[%(&;\—&s)”
xf DWex;{—
Xex;{—%fvd?’r[\g(% bg) +

pVx
4
2

i

=l
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|

Na N

IT II DL ID0ri JPalri JPelri,]

ia=1ig=1

3 %(:f’A“' (AbB)H

cod & Wit ]|

= (da— &B)‘*‘W
xexr{ - %fvdSr v gW]

(dpa+ da— 1)}

~f DW exp(— G[W, 1])

4xN
with
p U*[w] . .
xex;{——f d3r +¢g—1) 5 Vv W2
NIvoo 2 GIW,u] =%+ g | @
4 N 4XN
~ | DWexp—G[W,Au]),
| Pwessi-Brwam bV, Qul(U W w)12]
with Ny A
¢BPV QB[(U* W+ u)/2]
GIW,A ]—u+ﬁf dor N n - (32
M 4XN B B
— Moments of the total density averaged over the field configu-
_ ¢Apv|n Qal (U™ +W+Aw)/2] rations of W are given by
N Na
— p - ~
¢epV  Q[(U* —W—Au)/2] ~ o @A)+ da(r)epp
— In . (29
N Ng B
1 6Z[u]

Thermodynamic averages of the microscopic density differ-
ence are obtained via functional derivatives,

2N 1 5Z[Ap]
pZAp] AR

=(pa(r)—5(r)

<(’2’A(r) - %B(”)EPDZ -

(30

([pa(r) = da(N ][ dalr)— da(r')]ero
2NV 1 SPZ[Au]
_(7) Z[Ap] SAu(r)SAu(r’)

=([AA() =PI Pa(r")— Sa(r

Ap=0

gl)

(31)

EPEZGI

=(Pa(r) + da(r))epo= (DA (N + P5 (1) =1,
(33)

2
%) ([a(n)+ PN Palr)+ (') ero

1 SZEpu]
Z[u] Spu(n)dur) |,y

={([pa() + Pa(DI[Palr") + ds(r' ) erp
1__< SPR(r) 6¢§<r)>
).

(34

SWA(r’ ) SWe(r'

N< SR 5¢§<r>>
P\ 6Wa(r')  6Wg(r')
These equations describe the actual fluctuations of the micro-
Similarly, we can calculate the fluctuations of the total scopic composition of the systeaiter the saddle point ap-
density, which are induced by the saddle point approximaproximation, i.e., of the EPD method. Having performed a
tion. saddle point integration iJ, we have ignored fluctuations,
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and we cannot expect EqE1) or (34) to be accurate. In- Because the composition is conserved &mth— bg)
deed, while the incompressibility constraint is fulfilleth  — (w) we expect the order parametatwith which we are
averageEq. (34) demonstrates that the saddle point approXi-now describing our system to also be a conserved quantity.
mation leads to spurious fluctuations of the total density. InTherefore the dynamics o are given through the relax-
Appendix B we use RPA to evaluate E(B1) and show gational dynamics of a mod@ system, referring to the clas-

explicitly the deviations between Ed31) and the well sjfication introduced by Hohenberg and Halpe[d].
known RPA-structure factor.

Alternatively, we can deduce the exact averages from the JW(r) , ,
full free energy functionaG[U,W] in Eq. (26) by introduc- pram Al fVA(r,r )Vepw(r')+n(r,t),  (40)
ing a local exchange potentidlu like in Eq. (29). After a
variable substitutioW+ A u—W this leads to with the chemical potential being the first derivative of the
free energy with respect to the order parameter,
~ p 3 —Aul+2AuW
G[U,W,A,LL]=G[U,W]—vad S oG[W(r)] 1 Wt vNI & *
r)y= = + r)y— r1}.
@5 A= Ta i N (W NI — (1}

(41
With this free energy functional we obtain the exact average

of the microscopic densities %’he Fourier transform of this new diffusion equation is

IW(Qq) 1
5 5 1 — =~ A Q)G 5 AW(Q) + YN[ 4 (Q) — %
(Balr)— Ba(F o= — W(W>UW1 (36) p (a)q 2NxN{ (@) +xN[pa(q)— ¢ (a) ]}
+n(q), (42)
([Ea(r) = Pe(N)ILbalr) = be(r) Duw 7 is white noise that obeys the fluctuation-dissipation theo-
—25(r—r") 1 rem. The method using this diffusion equation we refer to as
= + 2(W(r)W(r’))UV\,. the EPD method26].

PX (xN) We have found a diffusion equation that describes the

(37) dynamics in terms of the external fiel/=W,—Wg and
leads to the right physical equilibrium. A similar equation

Recently, Ganesan and Fredrickger8] have used a com- without noise has been de_nved by Maurits and_Fra[eﬂji}.

plex Langevin method to sample the fluctuations of both!Ne question to be asked is whether this dynamics represents

fields U andW, and have obtained the averagenonomer any actual physical dynamics and how the choice of the On-

density ag ¢ )yw. SinceU has to be complex to make the S29€r coefficient influences the dynamics of the densities. It

last term in Eq.(24) a proper representation @i(Ba+ dg can be showr[26], see also a'ppendlx A, that using local
coupling in the EPD method is a good approximation for

._1) _|nd|V|duaI contributions to .th's average al;o ha_ve aNRouse dynamics. The Onsager coefficient that we would
imaginary part and the numerical procedure is quite in-

volved have to use in DSCFT to reproduce Rouse dynamics is given
We expect the saddle point integration owito be ac- in Eq. (18). The equivalentlocal) kinetic coefficient in the

: EPD hod for th i f th ities i
curate wheneveG[U,W] can be well approximated by a method for the same dynamics of the densities is

parabola inU—U*. In this case the fluctuations & are Agpp= — 2XND. (43)
only very little affected by the saddle point approximation in
U and the fluctuations o#V in the EPD method will closely For the EPD calculations again the Fourier expansion of

mimic the fluctuations oV of the exact partition function Eq. (22) is used. After having found the initial fields that
(24). Hence, we can use Eq37) with (W(r)W(r’'))yw  create the given densities with the methods used for the
~(W(r)W(r")) (i.e., after the saddle point approximatipn DSCFT, the chemical potentialy, is calculated according to
to obtain a very good approximation for the structure factorEq. (41). uy is then plugged into Eq42) to find the time
In Appendix B we confirm that in RPA the fluctuations\&f  derivative of the difference in the fields. Thereaftah/ ot
are, of course, not affected by the saddle point integratior= 9W, /dt— dWg/dt is integrated via the simplified Runge-
overU. Therefore we use the Fourier transform of E@§) Kutta method. After we have found the n&lt=W,—Wg,
and(37) in our calculations, we need to find the variabl&* to make sure the incom-
pressibility constraintp + ¢ =1 given through the saddle
1 point approximation27) is fulfilled again using the Newton-
(¢al@)— dp(a))=— X—N<W(q)>, (38 Broyden method. The new fields lead us to the new chemical
potential to calculatedW/dt= oW, /dt—JdWg/dt and so
forth.
_ 2y i 2 The method of the EPD has two main advantages com-
([ 2a(@) = do(@)l) PV)(Jr (XN)2<|W(C1)| ) pared to DSCFT. First of all it incorporates nonlocal cou-
(39 pling, and second, it proves to be up to an order of magni-
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tude computationally faster. There are two main reasons faicles in the system. In the Monte Carlo simulations, how-
this huge speed up: In EPD the number of equations thatver, the choice ofl=64, which is equivalent to a polymer-
have to be solved via the Newton-Broyden method to fulfilization of 200-300 in real polymers, is a compromise
incompressibility is just the number of Fourier functions pbetween the possibility to compare the simulation results
used. The number of equations in DSCFT that have to bgjith mean field results and the largest still sensibly manage-
solved to find the new fields after integrating the densities isiple amount of computational resources, because an increase
twice as large. On the other hand, comparing diffusion equa the polymerization leads to both an increase in the length
tion (19) used in the DSCFT method with E@O) in EPD, it gc4je and a slowing down in the kinetics of phase separation.
is easily seen that the right-hand side of the latter is a simplg-, actually compare Monte Carlo simulations with SCFT

multiplication with thg squared wave vector_of the rele_vamcalculations the parameters of both models have to mapped
mode, whereas the right-hand side of EfP) is a compli- onto each other

cated multiplication of three spatially dependent variables. In SCFT the only present length scale is the end-to-end

distanceR, of the polymers. It can be measured directly in
the Monte Carlo simulation®,= Nb=25.12. This gives us
A. Bond fluctuation model the length of the system to he=160=6.35R..

The Monte Carlo simulations presented in this study makt?:I In the S(_:FT calculations, only the combinatigh of th_e
use of the bond fluctuation mod2,33, which is a coarse ory Huggins parameter and chain Igngth enters. This sets
grained lattice model, that incorporates the relevant featuréd'® temperature scale. The Flory Huggins parametean be
of polymers. These are connectivity of the monomers along §2/culated from the interaction parameterof the square
chain, excluded volume of the segments, and thermal intepvell potential defining the interaction between monomers in
action between monomers. In this model each effectivéhe Monte Carlo simulations with the following relatip#7]:
monomer occupies a cube of the lattice and blocks the eight 1 1
sites at the cube corners for other monomers. Monomers of a — —
chain are connected by one of 108 possible bond vectors of X kgT Zeffl €8 2 (€ant €oe) | = 2Zere, 49
length 2,/5, /6, 3, or\/10 measured in units of the lattice
spacing.(All following lengths are assumed to be given in
these units unless an explicit unit is giveihese bond vec- Ze is the effective coordination number in the bulk, i.e., the
tors are chosen to ensure the excluded volume conditiogverage number of intermolecular contacts per monomer.
which makes sure that they do not cross each other during/e hereby speak of contacts, if the distance between the
their movement. This large number of possible bond vectorgnonomers is smaller thagi6.

allows 87 different bond angles, which provide a good ap- e ayerage compositiony is a parameter of the SCFT,
proximation for _contlnuous connectlylty between the mono- he total number density of monomers is only required if
mers of the chain. Each of the effective monomers represen . .

, . Uctuations are considered.
three. to five real Ch?m'c"’.‘l repeat uries,46. The num_ber The single chain diffusion constab, which can be ex-
density of the occupied sites is chosen topbel/16, which tracted from the Monte Carlo simulations by measuring the

reproduces the properties of a polymer melt well. Interac- . . ) .
tions between the monomers are modeled through a squaP%ean square displacements of the chains, gives the time

well potential with monomers of the same kind attracting and®cal€ 7= RE/D=1.5x10" Monte Carlo stepgMCS). 7 is
monomers of different kinds repelling each other. The inter-constant becausb and R, are almost independent of time
actions are chosen to be symmetric and to act inside a radi@d composition4g]. _ _

that extends over the first peak of the pair correlation func- The length of the chains used in the Monte Carlo simula-
tion. This means the interactions act up to a distanceof tions isN=64. This is somewhat larger than the entangle-

that is equivalent to the 54 neighboring cubes of a monomefNent lengtiN~32[45,46, therefore, we are in a crossover
regime between Rouse dynamics and reptdat#®h50. This

kgTe=0, for rs\/é means, when we are comparing dynamic mean field results
0 NG (44)  with Monte Carlo results we expect to find a reasonable
’ for r= 6. agreement if we regard Rouse dynamics.

The moves used to simulate a purely diffusive movemen This identifies all parameters of the SCFT calculations
purety without noise. If we neglect fluctuations, systems with

of the monomers are local random monomer hopping move itlentical YN, R., and composition but different degree of

where one tries to move a randomly picked monomer to a A 3 "
neighboring lattice site. interdigitation pRZ/N [34,51] and statistical segment length

b= RglN give identical results. The degree of interdigitation
controls the strength of fluctuations and mean field theory is
believed to be correct in the limitR3/N— . The statistical
segment length sets the smallest length scale for which the

The Monte Carlo simulations were carried out with chainsGaussian description of polymers is valid. If we were inter-
of 64 effective segments in a box with lendtl=160. With  ested in the structure on smaller length scales we would have
an overall number density gf=1/16 there are 256 000 par- to use a different chain modé.g., wormlike chaif52,53)).

IIl. MONTE CARLO SIMULATIONS

~ €EAAT T EBBT EABT

B. Comparison between SCFT calculations and Monte Carlo
simulations
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R 6 versus time. The displayed valuesafre given in units of R,.
© The results were obtained through DSCFT calculations in a three-
FIG. 1. Density profiles at different times during demixing after dimepsional system of length, =L, =L,=6.3R. using 7X7x7
a quench fromyN=0.314 toyN=5 in a one-dimensional system functions for a quench fronqyN=0.314 toyN=5. The expected
using 12 eigenfunctions. The upper panel shows the early stagéXPonential behavior during early stages of demixing is well repro-
when concentration fluctuations with wavelengths between oneduced.
third and one-fourth of the system size are amplified. In the lower
panel later stages are displayed—the concentration inside a domaiench at time=0 we have a homogeneous mixture with
slowly saturates leading to sharp interfaces between the coexistingndom statistical density fluctuations. After the quench
phases. Note the change of scale on the composition axis betwegRese fluctuations are amplified. It is apparent that the result-
the two panels. ing density profile is well describable with plane waves, so
that the set of basis functions we have chosen proves to be
IV. RESULTS not only technically convenient for the calculations but also

In the following sections we regard the early stages ofdescribes the physical phenomena well. At Iatertimes we see
spinodal decomposition after a quench from the one phas@at the mode with the wavelength about one-third of the
region with yN=0.314 into the miscibility gap withyN system size is ampllflgd most until at even later stages a
=5 for a symmetric binary polymer mixture. For much saturation inside domams takes place until these domams are
larger incompatibility the width of the interface becomes of SéParated by sharp interfaces. Later stages of demixing are
the order of the statistical segment length, and properties ofCt appropriately described within our purely diffusive
this length scale cannot be described by the Gaussian chaiRode! because hydrodynamic mechanisms and random fluc-
model. For smaller incompatibilities—in the vicinity of the tuations are neglected but play a dominant role.
critical point yN=2—composition fluctuations are very Linearized Cahr_1-H|II|ard-Cook_the0|139—11] prede(cgf, an
strong(i.e., non-Gaussiarand the mean field approximation €XPonential behavior for the density modgg(q) ~e™"" as
becomes worse. We will first show some general results folong as the differencea(r) — ¢ between the actual density
the dynamical mean field theory. We will then carry on toand the average density is small. Starting with a homoge-
compare these results with Monte Carlo simulations showingieous mixture before the quench this requirement is fulfilled
what role the Onsager coefficient plays. After having ne-during early demixing. Our density coefficienis(q) are
glected random statistical fluctuations in SCFT so far we willequivalent to the actual, but discretized, density modes. In
explain how fluctuations are implemented into the two dy-Fig. 2 some of the coefficient$,(q) are displayed versus
namic mean field theories and discuss their influence on théme. These results were obtained for a three-dimensional
dynamics. system using DSCFT with a local Onsager coefficient. The
exponential behavior is obviously well reproduced for early
times. For larger values of] the exponential behavior
changes earlier. This is also in agreement with experimental

If a system is quenched from the one phase region into theesults[54]. The faster growth of density modes with smaller
two phase region the linearized theory of spinodal decompowave vectors leads to the creation of small domains on a
sition [9—11] predicts that fluctuations with wavelengths length scale~1/q. These domains then cause density modes
larger than a critical valua., i.e., wave vectorsg| below a  with wavelengths smaller than the extension of the domain to
critical valueq,, start growing spontaneously. This is illus- be damped. Fig. 3 shows the corresponding relaxation rate
trated in Fig. 1 showing results obtained through DSCFTR(q) versusq. We see that for wave vectors with a value
with local coupling in a one-dimensional system. Before thebelow g, an exponential growth of the density modes sets in

0214

t (10° MCS)

A. General aspects of spinodal decomposition

041804-9



ELLEN REISTER, MARCUS MULER, AND KURT BINDER PHYSICAL REVIEW E 64 041804

F T T I T T T T I T | 20 T T I T
20F ] - ]
r ] 10 .
10 - L ]
L ] 0 r 4
0 o I :
o [ ] = L ]
s I 1 g ]
T 1of - 1o 7
N o—e DSCFT 1 C ]
F --- 8SL g L ]
20 - WSL X a 20 =
C ] C &-—OEPD 1
: : : © @ ARouse(q)=AlocaI2(X+e-X_'1 )/Xz :
30~ ; 7 30~ - Ay, =DNOd; N
40 C ' | ' | L | L | ' | L i anl | | | | b
0 1 2 3 4 6 7 g 1 2 3 4 5 6 7

aR, aR

FIG. 3. Corresponding relaxation rate to the density modes dis- F|G. 4. Relaxation rates obtained through two-dimensional
played in Fig. 2. Below a critical wave vectqg the density modes  DSCFT calculations using local and Rouse dynamics and EPD cal-
are increased spontaneously. Modes with larger wave vectors aggjlations. The DSCFT results using the pair-correlation function of

damped. As expected the results are found to be between the tWphomogeneous melt and the EPD results are in good agreement.
limits of weak(WSL) and strong segregatid®SL) as given by the
Cahn-Hilliard-Cook theory. the range 6=q=q. nonlocal coupling leads to a reduction of

the relaxation rate and a shift of the maximum to smaller
whereas forq>q, initial fluctuations are damped. In the values of the wave vector. Also in the regign-q, the ini-
growth region there is a maximum. The two dashed linedial density fluctuations are not as strongly damped as for
framing our results are the relaxation rates for temperaturelocal dynamics.
just below the critical temperatur@veak segregation limit, Note that the difference in growth rate between the local
WSL) and for very low temperatureéstrong segregation dynamics in the WSL and SSL is very similar in magnitude
limit, SSL) as they are given by the Cahn-Hilliard-Cook to the difference in growth rate between the full SCFT cal-
theory, culation using a local or a Rouse-Onsager coefficient. This
demonstrates that the square gradient expression for the free
R(Q) — q energy is not sufficiently accurate: quantitative deviations
2 _ZA(O)[X3(¢A)_X]( 1- _2>: (48 from experiments or simulations might be either due to the
q e additional approximations of the square gradient approach or
the wave vector dependence of the Onsager coefficient. To
compare simulations and theory quantitatively and to extract
V2K — _ o the interplay between single chain dynamics and the kinetics
=gV Ba(1— P XN— xs( pa)N]H of collective composition fluctuations, a quantitative self-
e consistent-field calculation is required.
Vk

=—(yN/2—1)*2, (47 B. Comparison between Monte Carlo results and dynamic
Re mean field results

2

with

The Monte Carlo simulations were performed on a Cray
, o , T3E using a trivial parallelization scheme running 64 con-
=¢g=0.5 when the spinodal point lies aisN=2. k iS5 rations in parallel to achieve good statistics. 5400 000
found to be 18 in the WSE23] and 12 in the SSLSS]. The 1o were performed that is equivalent to 45 days of CPU
maximum growth rate is found foqn=0c/v2. With xN  time per processor. The EPD and DSCFT calculations, the
=5 lying between the SSL and the WSL our result was to bgesylts of which are presented in this section, are for a three-
expected. The influence of Rouse dynamics on the relaxatiogimensional system using X77X7=343 basis functions.

rate is displayed in Fig. 4. Here we have presented results fofhe equivalent of 12700000 MCS were performed taking
a two-dimensional system using DSCFT with Onsager coefa,nroximately 65 days on a Cray J90.

ficients describing both local kinetics and Rouse kinetics for * The global structure factor defined by

an approximately homogeneous mixture and EPD. The EPD

and the DSCFT results using Rouse dynamics are virtually 3 2 igr

identical, but remembering that the EPD method is compu- S(q,t)= fvd r{@a(r,t) = da(r,)}e"), (48
tationally much more favorable, this method should be used

when Rouse kinetics is considered. Local and nonlocal couis an important experimentally measurable quantity for the
plings lead to distinct differences in the relaxation rates: indescription of the phase separation process. In Fig. 5 the

The last line is only valid for symmetric mixtures witEA
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FIG. 6. Global structure factor versus time for a few randomly
. . . : . : . chpsen values of. The values of the wave vectors are given in
b) o —01895x10° MOS units of 1R,. q. correspon_ds to the critical wave v_ector extracted
400 o <> e 2.175x106 vos| fr(_)m DSCFT. An exponential growth qf the mode; is found_. Modgs
I [ o 2:375)(106 vos| with a smaller grpwth rate change their exponential behavior earlier
v=v 2 625410° MGS than those growing faster.
300~ -0 2 875x10° MCS
no quantitative agreement between DSCFT with local kinet-
Sl ics and the Monte Carlo simulations. The peak in SCFT
? 200} grows much quicker and also the position of the peak is too
far right. As has been mentioned before, including Rouse
" dynamics leads to a reduction of the relaxation rate in the
100 growth region and the wave vector with the maximum
growth rate is shifted towards a smaller value. Figufe) 5
- satisfies these expectations. The position of the peaks for
o - SCFT and Monte Carlo almost coincide and the growth rates
0 10 of the peak are much closer to each other although SCFT still

overestimates the growth rate. A more detailed comparison is
possible if we plot the corresponding relaxation rates versus
FIG. 5. Global structure factor versus wave vector for differentthe wave vector. As we have seen before, the modes of the
times. Broader lines represent Monte Carlo results, thin lines wittgensity calculated with the dynamic mean field theory follow
the same symbols the corresponding DSCFT results. Ranesm- g clear exponential behavior. To derive the relaxation rates of
pares DSCFT with local coupling with the Monte Carlo simula- the global structure factor, we need to plot the modes of the
tio_ns. Local dy_namics obviously overestimates the growth rate an@lobal structure factor on a logarithmic scale versus time.
shifts the maximum growth rate to larger values. Pailcom-  Thjs js done in Fig. 6 for some randomly chosen values. of
pares Rouses dynamlcs with Monte Carlo r(_asults showing bette{-he modes with a value smaller than the critical valug
agreement. The inset graphs s_how the beha_wor of the global StUqerived through DSCFT show a clear exponential behavior.
ture factor in the area af.. While the mean field results lead to a . . S . .
common intersection point defining,, the Monte Carlo lines do This behavior Chang_es with time, especially, the blgg_er the
not cross each other in a single point making the definitionof value qu.Of the growing mode, the sooher_the chgnge In the
impossible. exponential pehawor takes place. Thls is qualitatively in
agreement with the results we obtained through dynamic
global structure factor is plotted versus wave vedaoior ~ mean field theory, see Sec. IV A. Modes witf=q. are
different times, thin lines denoting SCFT results, wide linesmore or less constant in our figure. Therefore an estimation
with the same symbols corresponding Monte Carlo simulaof g, from the Monte Carlo results alone would suffer from
tion results.(Because the SCFT calculations could only besome ambiguity, of course, this is not only because the ac-
performed for a single starting configuration instead of 64curacy of the Monte Carlo results is limited, but is a matter
like in the Monte Carlo simulations, for the initial time, the of principle [8]. The interplay of fluctuations and nonlinear
global structure factor of a homogeneous mixture given byeffects has the consequence that a well-defipedoes not
RPA [42] was used. Global structure factors for later timesexist. For times earlier than the displayed interval, random
were extracted through the exponential time dependence dluctuations influence the behavior of the modes so strongly
the density modes in the SCFT calculatior®art () com-  that an exponential behavior is not visible. The relaxation
pares Monte Carlo with local kinetics and pénj} compares rates resulting from the fits to the points in Fig. 6 for the two
Monte Carlo with Rouse kinetics. Figurédb clearly shows  different time intervals indicated through the solid lines and
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20— - S LN RSP SV ST S W sults but regarding Rouse dynamics through the use of EPD
@4 MC: 1.92x10%<1<2.36x10°MCS and DSCFT with Rouse dynamics. The inset figures are the
OO DSCFT: 0<t<1.0x10'MCS corresponding Cahn plots displayifR{q)/q? versusg?. As

1 is obvious from the behavior of the global structure factor,
local dynamics gives a relaxation rate that is much too large
and the wave vector of the maximal growth rate is also too
big. The Cahn plot of the mean field relaxation rate shows
the linear behavior, which is expected for local coupling.
This is in strong disagreement with the Monte Carlo results.
For Rouse dynamics we actually find an almost quantitative
agreement for earlier times in the region of the positive
growth rate. For later times, however, the relaxation rate de-
creases in the Monte Carlo simulations—this has also been
observed in experimental studi¢®7]—, while SCFT still
shows the same exponential behavior as is found for earlier
times. In the Cahn plot we see that Rouse dynamics leads to
a nonlinear run oR(q)/q? versusg?. This is obviously also

¢ the case for the simulation results and is in agreement with
— earlier simulationgd15-17 and experimental observations

E ) iy mg:gzﬂg}:;:ﬁyﬁs_ [27-29. This nonlinear behavior of the Cahn plot is related
B oo DSCFTA. OB o the fact that we consider a deep quench, for whigR,

>1 [22]. For a shallow quench, for whicgN exceeds the
critical value y(.N=2 [42] only slightly, one hagj.R.<1

[22], and then the theory would yield a linear Cahn plot, also
consistent with corresponding observatidi®. The latter
case is less interesting, however, because then the polymer
mixture is to a large extent equivalent in behavior to a fluid
mixture of small molecules, and there is no longer an effect
of internal Rouse relaxation modes on the phase separation
dynamics in this limit.

If we now compare our results for larger wave vectors we
see big discrepancies independent of the chosen dynamics in
SCFT: Atq, the structure factor is independent of time in the
early stages of the SCFT calculations, i.e., structure factors at
different times exhibit a common crossing pointcgt, see
e the inset graphs of Fig. 5. No such intersection occurs in the
FIG. 7. Corresponding relaxation rates to Fig. 5. Péagtom- simulation data. Mean field theory damps the density modes

pares the Monte Carlo relaxation rates with DSCFT calculationél\”,th 9>qc while Mome Carlo SImuIa.tlons Iegd tQ a refax-
with local dynamics. Paneb) compares Monte Carlo results with ation rate fluctuating around zero. This behavior is also seen

EPD and DSCFT calculations with Rouse dynamics. For earlief the global structure factor, see Fig. 5. The right side of the
times good agreement in the growth region is found but MonteSCFT peak decays fast, while the Monte Carlo peak is much
Carlo simulations show an earlier change in the exponential beharoader with a slower decay. Both the earlier change of the
ior. The inset figures are the corresponding Cahn plots, where on@xponential behavior and the form of the relaxation rate for
displaysR(q)/q? versusg?. larger wave vectors are the result of random fluctuations. As
was expected, the influence of fluctuations during the very
the corresponding mean field relaxation rates are displayeg@rly stages of spinodal decomposition on the growth of the
in Fig. 7. Only the exponential behavior of the earlier of thedensity modes is rather small, but they are crucial for smaller
two marked time intervals may be interpreted as the expecte@avelengths and determine the change in the exponential
behavior of early spinodal decomposition. For later times &¢ehavior, because random fluctuations cause some modes to
gradual change away from the exponential behavior sets ifeach an amplitude where the nonlinear regime sets in early.
The second fit shows an apparent exponential behavior be-
cause the time interval is too small to resolve the change.
Hence the resulting “relaxation rate” for the later time in-
terval may only be treated as an indication for the deviation The diffusion equations we have used so far are com-
from the earlier exponential behavior. Péat shows the re- pletely deterministic, but obviously in all dynamic processes
laxation rate for DSCFT with local dynamics in the time random statistical fluctuations are present. To regard these
interval O<t<1x10" MCS and the Monte Carlo results for fluctuations we have to add a random forgeo our diffu-
the two time intervals 7.2810°<t<1.5x10° MCS and sion equationg19) and (40) that is linked to the Onsager
1.92x 10°<t=<2.63x10° MCS; part(b) shows the same re- coefficient through the fluctuation-dissipation theorem,
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C. The influence of random fluctuations
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In our calculations the diffusion equation is integrated <Wq2> -
through discrete time interval$t that are determined

through the Runge-Kutta scheme. In DSCFT, for example,
we use the Langevin equation :

Daq(t+6t)=daq(t)+ &A(q)qz,uqu fq(ot), (51) 0.001|=

0.002-

with fq(ot) expressing random fluctuations that obey the aR,

fluctuation-dissipation theoref®6,57), ) .
FIG. 8. The averagé|®|*) derived with DSCFT and|W,|*)

fq(ﬁt)= ’—ZA(q)qz\/ﬁ r (52) derived with EPD displayed versup Both calculations are valid
for a homogeneougyN= 1.8, one-dimensional system with length
r is a random number with the propertigg=0, <r2>= 1. L=6.33,. For larger values ofj good agreement with the RPA

averages is found. For smaller values ptoo few independent

The analogf4(ét) is used to perform EPD calculations : . .
configurations of the system were taken into account.

with fluctuations. The difficulty in this case is to interpret the
resulting fluctuations of the external fiel=W,—Ws in  tuations still show the same exponential behavior, the relax-
terms of the densityd = ($a— ¢s)/2. As we have seen in ation rate is reduced as is also seen in the Monte Carlo simu-
Sec. I C the field and the density fluctuations are linked taations. In the range above, the modes of the fields or
each other through Eq&38) and (39). densities do not follow an exponential behavior but fluctuate
To ensure that the way the fluctuations are included issround zero. Consequently the relaxation rate is not well
correct and the validity of these E¢88) and(39) is given,  defined in this region leading to strong fluctuations of the
we consider a homogeneoyg\ = 1.8, one-dimensional sys- relaxation rate in Fig. 10. For very early times when the
tem with lengthL,=6.35R, using both DSCFT and EPD. density modes are still of the order of the fluctuations of the
From the DSCFT calculations we deriyed,4|?) for each  homogeneous system it is also not possible to see an expo-
wave vector while the EPD method |eadS(FW |%). Inboth  nential behavior because the density changes caused through
cases we averaged over 10000 snapshots Of the density eindom fluctuations conceal the growth of the modes during
the field made during their time evolution. In Fig{BP,|®)  very early spinodal decomposition.
and (|W,|?) are plotted versus. The solid line is the ex-
pected result from RPA. For larger valuescpive find good
agreement, but the amount of used configurations was no
enough to find reliable results for smaller valuegjdfecause 8x10°
the correlation times are much longer due to the diffusive
dynamics. If we plot(|®|?) versus(|W,|?), as is done in
Fig. 9, we find good agreement of our data with the expectec
linear behavior. @ e
After having proven that the above treatment of random  4q0%
fluctuations leads to the expected behavior, we focus on the
influence of fluctuations on spinodal decomposition. Monte
Carlo results show that the exponential behavior change:
earlier than in SCFT calculations without fluctuations result-
ing in a reduced relaxation rate. The relaxation rates for dif- 0
ferent time intervals obtained through the Monte Carlo simu-
lations and the EPD method are presented in Fig. 10. The
EPD results were obtained by averaging the time evolution FiG. 9. The linear behavior expressed in E2g) is well repro-
of the fields of 64 two-dimensional configurations. For ear-qyced, as we can see, whéb,[2), obtained through DSCFT, is
lier time intervals the relaxation rate is quantitatively very displayed versug|W, 12), obtamed through EPD. The points to the
similar to the rate without fluctuations in the region below right correspond to small wave vectors, those on the left to large
g. - For later times, however, when calculations without fluc-wave vectors. The solid line is the corresponding RPA result.

1x10™

6x10° -

@ DSCFT-EPD
— RPA

2x10° -

| L | . | . | . | .
0.001 0.0012 0.0014 0.0016 0.0018 0.002

<Wq >epp
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ment for early stages between the DSCFT method using the
pair-correlation function for the homogeneous system and
the EPD method.

To quantitatively test these mean field predictions we
compare them with results obtained through Monte Carlo
simulations employing the bond fluctuation model. The
chains used in these simulations are expected to show Rouse
behavior because of the chosen chain length 64. The
comparison is possible without any adjustable parameter. We
compare the global structure factor, which is the experimen-
tally accessible quantity, and the relaxation rates. Local dy-
namics in DSCFT overestimates the growth of the global
structure factor by far, but the agreement is better for Rouse
dynamics especially for earlier times. Neglecting random
fluctuations in our mean field calculations proves to be jus-
tified for wave vectors with positive relaxation rates and ear-

FIG. 10. Relaxation rates obtained through Monte Carlo simudier times, but should be included to investigate later times.
lations and EPD calculations in two dimensions with random fluc-  Fluctuations can easily be included in DSCFT and EPD.
tuations for different time intervals. Fluctuations lead in both meth-The difficulty in the EPD method is the fact that the field
ods to an earlier change in the exponential behavior of thdluctuations have to be interpreted in terms of the physical
increasing modes. density fluctuations. We can find a relation between the field

and the density fluctuations. EPD calculations with fluctua-
V. SUMMARY tions lead to an earlier change in the exponential behavior of
In this study we analyzed the influence of single chainthe density modes as was also the case for the Monte Carlo

dynamics on the collective diffusion during early stages ofSimulations. The missing dampening of the modes wgth
spinodal decomposition in a symmetric binary polymer=dc as is found in the simulations is also reproduced.
blend. We used the SCFT for polymer mixtures to explore W€ have seen that the single chain dynamics has a pro-
two versions of dynamical mean field theory. The Sing|enc_)unced mfluenc_e on the _colllectlve dynamics of.a polymer
chain dynamics enters these descriptions through an Onsag@ture. Comparing quantitatively Monte Carlo simulations
coefficient. The first method we call DSCFT propagates thé‘”d dynamlc.al mean field theory we have validated the mean
densities in time and gives us the possibility to model bothfi€ld calculations. Note, however, that we haye considered a
local dynamics and approximately the nonlocal dynamics w&l€ep quench far below the critical point; for shallow
expect for the Rouse model. In DSCFT the correct treatmerfiuenches close to the critical point, mean field theories are
of Rouse dynamics would involve the calculation of the pair-N0t expected to be accurate. The later stages of spinodal
correlation function at every time step, which is Computa_decomposnmn are not accessible with either method. During

tionally a rather expensive task. On the other hand during@ter times hydrodynamical interactions become important.
early stages of demixing, the mixture is only weakly inho- L-atticé mod_el Monte Carlo_ S|mulat|0n_s lack a hydrodynaml-
mogeneous so that the use of the pair-correlation function gf&l mechanism. In dynamical mean field calculations hydro-
a homogeneous mixture, which is analytically known, serve&lynamic coupling can be includg¢88,59, and hence, they
as a sufficient approximation. In the second method the in¢@n be extended beyond the validity of the lattice model.
stantaneous configuration is not described by the densities

but by the effective external fieldEPD). We find a Langevin

equation for the external field, which using “local” kinetics ACKNOWLEDGMENTS

in the fields is found to describe a polymer mixture with  \ya have benefitted from discussion with D. @s. F.

Rouse dynamics. Apart from “automatically” including schmiq, and V. Ganesan. Financial support was provided by

Rouse dynamics, this EPD method has the big advantage @le Graduierten Kolleg “supramolecular systems” of the

being up to an order of magnitude computationally faSterUniversity of Mainz and the DFG under Grant No. Bi314/17
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First numerical calculations with these methods for aiarfaces.” Generous access to computers at the Niichu

quench from the one phase regigiN=0.314 to the WO  ,nq the HLR Stuttgart are gratefully acknowledged.

phase regioryN=5, neglecting random fluctuations, show a

clear exponential behavior of the density modes, as was ex-

pected for a mean field description. The relaxation rate of the ppenpix A: REPRESENTATION OF ROUSE DYNAMICS

density mode is strongly influenced by the choice of the THROUGH EPD

Onsager coefficient: In the growth region Rouse dynamics

reduces the relaxation rate compared to local dynamics and As mentioned before it is possible to show that the EPD

the position of the maximum growth rate is shifted to smallermethod using local coupling is a good approximation for

values ofg. Forgq>q., however, Rouse dynamics causes thereproducing Rouse dynamics of the physical densities. The

modes to be damped less quickly. We also find good agreederivation of the EPD method we present in this section was

R(q)/D

¥—% EPD with fluct.: 1.4x10°<t<3.0x10° MCS
B—8 EPD with fluct.: 3.0x10°<t<4.6x10° MCS
0--0 EPD without fluct.: 0.0<t<6.97x10° MCS
a4 MC: 7.25x10°<t<1.5x10° MCS

L |e=-® MC: 1.92x10°«t<2.63x10° MCS
30 ] . | . | . |
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introduced by Maurits and Fraaije and can be found in Because of the incompressibility constraitt andug are

Ref. [26]. not independent of each other. There is only one independent
Following the method we used to include dynamics in thechemical potentiak = ua— wg SO the equation of motion for

SCFT to achieve the DSCFT method, we employ a saddléne external fields that is to be used in our case has the form:

point approximation in the external fields that leads to a

bijective relation between the external fieldg andwg and IWA(T)  dwpg(r)

the densitiesp, and ¢pg. This means we can choose with gt at

which of the two variable sets we would like to calculate. On

the other hand the pair-correlation function that is part of thdf we compare this equation with E¢40) we see that den-

Rouse-Onsager coefficient can be expressed as the functiorsdlies evolving in time according to Rouse dynamics are well

derivative of the density with respect to the external potendescribed through the EPD method if a local kinetic coeffi-

=—-DV2u(r). (A7)

tial, see also Eq(B13). cient as given in Eq43) is used.
Opalr) A . APPENDIX B: RANDOM PHASE APPROXIMATION
== Polr.r’). (A1) FOR THE FLUCTUATIONS IN EPD

OWA(r")
The single chain partition functio® is defined through

To calculate inw space we have to transform the time de'[compare with Eq(6)]

rivative of the densities according to the chain rule

p ~
IPa(r,t) _f SPa(r,t) dwa(r',t) '3 Q:f D[rl]Pl[r]eXF{ - vadsr W(r)d’l(r)},
at SWu(r',t) ot (BY)
__@f Po(t r,)ﬁwA(r',t)dr,g (A2) where ¢,(r)=(N/p)fds &(r—r(s)) denotes the single
N EA at ' chain density. We now expect the system to be only weakly
inhomogeneous, i.e., meaning the density and the external

field only differ a little from the average valuep,(r)
=N/pV+ 8¢4(r); W(r)=W++ SW(r). The density and the
external field are presented as a Fourier expansion,

Combining this equation with the diffusion equation for
Rouse dynamics, Eq18), this leads us to

gAJ , &WA(r,!t) /3
N Po(r,r )Tdr

A " ~ 1 . .
BO=NIV+ S, o8, domy [ P e
g q#0 Vv

=DWAVr.fvpo(r,r')vr,MA(r’)dr'S. (A3) (B2)

This Fourier expansion is now inserted in EB1),
Using the approximation
— pV ~
V. Po(r,r')=—=V, . Py(r,r'), (A4) Q=f D[rl]Pl[r]exp[—W—Wq;O qu)_q}

one easily arrives at

— pV ,\
:eXFi_W]fD[rl]Pl[rl] 1‘W Wy

OWL(r' t
—j Po(r,r’)—A( )dr’3
v at

2

:Df Po(r,r")VZ wa(r’)dr’2, (A5) 2N% qq'#0

\%
—_ p ~
leading to an equation of motion for the external fields, =exq—W]Q0< 1‘W & Wqd—q
IWA(T) o1
=—DV2un(r). A6 p2V .
ot IU’A( ) ( ) + 2 Wqu,¢)7q¢7q,+ . > . (B3)
0

Approximation(A4) is obviously exactly valid for a homo-

geneous mixture, because the pair-correlation function only), denotes the partition function of a single chain without an
depends on the distan¢e—r'| between two points. In the external field. The average in the last line is to be taken over
inhomogeneous case,rifandr’ are in different phases and all chain configurations that are possible when there is no
neither of them in the interface,V,Py(r,r') and external field present. Because the average deviation of the
V. Pqo(r,r") are of different sign making this approximation density{5¢), from the average value is zero if there is no
justifiable even if the actual values differ. external field(¢q)o=0 is valid. The averagep_q¢_q )0 iS
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given through the single chain structure faC&j(q) of a  Since the free energy is quadratic in the RPA approximation

Gaussian chain(g_q¢_q)o= N/(p?V?)So(0) 8_q-q - Ne- the saddle point integration is equivalent to the functional
glecting higher terms, we obtain the RPA result for the singldntegration overJ. This again leads us to an expression for
chain partition function the free energys[ W] only depending on the external field
variableW,
QRA=ex —W]Qo ex - So(@)|Wl?|. (B4)
PT2N @b l o 23, | GadeSo(@) 5 [Wel?+ Gpom,
kgT 2N? 470 ATE 2x a om
Obviously a corresponding expression is valid forreandB (B8)
polymer. These RPA single chain partition functions are 5
plugged into Eq(26) leading to Now the average|W,|) can be calculated,
— — 2
GLUW] 4V Quo_epV, Qeo pVx (W= 2X ®9)
keT N ", N ng | 4 PV 1-2xpachSo(q)
(ba—dg)pVW  pV 2 Using our resul(39)
2N 4ANyN

4
<|¢Aq ¢Bq| >___ <|W |2> (BlO)

> W, (xN)?

4NXN 470
we express the density fluctuations in terms of the field fluc-

DapV 5 )‘(Wqu Ugl? tuations and recover the well-known RPA expressia],
- A it i
- (O S
- A~ PBal /T /| T = X
_ dep (Ug—Wy)|? TP PV gaSe(a)  deSo(a)
g 2 S —5— . (BY)
=4SrpA(Q)- (B1Y)
Regarding ?_ng’ the wave vector dependent parts of the fregjsing the RPA single chain partition functigB4), we cal-
energy we f1in culate
GlUwW] _ pV [ So(@) 1 } _daV SQn  — 4a -
_— ' - —  —|lw.|? * _ _ A ig-r
T |2 2yl GR)= =0 SWa(r) — A N S(DWaee
(B12)
So(Q) ol PV
— =2 D §y(q)e ). (B13)
g E 5WA(r’) N a#0
A~ PB
+ o .
Xq;o [ 2 So(@ (VW) [+ Ghom The last equation is equivalent to EGA1) but due to the
particle conservation thg=0 contribution has to be taken
_ vV So(@) 1 out of the sum,(q=0) is just the average overall density
 oNZ &3 4 2x ¢a that cannot change if the external field is altered. With
these expressions we obtain for the “literal” fluctuations in
1 - -
_ Z(¢A_ ¢B)280(q)}|Wq|2] the EPD method according to E@1),
Sy(a) <|¢Aq_ ¢Bq|2>EPD
q
2N2 {70 (—|U +(¢A ¢B)Wq|2] :<|¢Xq_¢§q|2>
* *
T Gron (B6) LI eiq.(r_r,)< 5¢A<r,) N 5¢B<r>>
pV OWA(r")  6Wg(r')

We use this free energy to evaluate the partition function of

Eq. (25). Following the procedure we used before, we em- 8xS3(q) 2z . So(q)
loy a saddle point approximation with respect to the fl¢d = ~

ploy point app P ’ PVI1-2xdadeSo(@)] PV

SFlUW]| . = — 1—4¢pdy
|0 Ui (B deWe. (@) — S+ ¢2$B’S°(Q). (B14)
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Generally, the deviation for the RPA result is of similar mag-average of the composition by sampling the average pf
nitude as the RPA structure factor itself. For a symmetric— ¢* | i.e., the densities of single chains in the field configu-
quencthz%, however, we accidentally recover the RPA ration W, but one should not use this to calculate fluctua-
result. This example also illustrates that one can obtain th&ons.
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