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Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory
and Monte Carlo simulations

Ellen Reister, Marcus Mu¨ller, and Kurt Binder
Institut für Physik, WA 331, Johannes Gutenberg Universita¨t, D-55099 Mainz, Germany

~Received 30 April 2001; published 25 September 2001!

We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in
a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of
spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension
of the self-consistent-field theory for Gaussian chains, with the density variables evolving in time, and the
method of the external potential dynamics where the effective external fields are propagated in time. Different
wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal
decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that
maps the chains—in our case with 64 effective segments—on a coarse grained lattice. The results obtained
through self-consistent-field calculations and Monte Carlo simulations can be compared because the time,
length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension,
and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor
shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e.,
wave vector independent, kinetic factor. Including fluctuations in the self-consistent-field calculations leads to
a shorter time span of spinodal behavior and a reduction of the relaxation rate for smaller wave vectors and
prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in
agreement with the simulation results.

DOI: 10.1103/PhysRevE.64.041804 PACS number~s!: 61.25.Hq, 05.10.2a, 64.60.2i, 05.20.Jj
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I. INTRODUCTION

Over many years the study of phase transitions in fl
mixtures has become an important field because of their
nipresent occurrence in nature and more importantly beca
of their technological meaning in creating new materi
@1,2#: blending of different species can reduce cost, impro
processibility, provide synergy between components, and
low for recycling.

Sophisticated analytical techniques—e.g., self-consist
field theory @3–6# or polymer reference interaction sit
model theory@7#—exist for calculating the phase behavi
and detailed interfacial properties of polymer blends. B
cause of the large extension of polymer chains equilibri
properties are well described, however, the analytical
scription is much less satisfactory for the dynamics of m
ticomponent systems.

The transition from a completely homogeneous mixture
an equilibrated two phase system is a very long process
sisting of a sequence of highly inhomogeneous states. M
different methods to analyze this process have been app
including experiments, theory, and computational simu
tions. After quenching a polymer blend from the one pha
region deep into the two phase region spinodal decomp
tion takes place. Different time regimes are recognized d
ing spinodal decomposition. During early stages the am
tudes of the concentration fluctuations, that are amplified,
still so small that they do not interact with each other. F
later times the local composition reaches the equilibri
value of the coexisting phases, and nonlinear interacti
between the fluctuation modes become more and more
portant. At even later stages hydrodynamics dominates
coarsening@8#.
1063-651X/2001/64~4!/041804~17!/$20.00 64 0418
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Spinodal decomposition can be approximately descri
through time dependent Ginzburg-Landau theory, a
known as Cahn-Hilliard-Cook theory@9–11#. Many efforts
have been made to numerically calculate the time evolu
of a mixture in the framework of this theory@12–14#. These
calculations are appropriate to give a first insight into h
phase separation takes place, but are far from describing
system quantitatively well. Even though binary polym
blends are an ideal testing bed for these approaches, ea
Monte Carlo simulations@15–17# found rather pronounced
deviations from their predictions. To find a quantitative
better description, it is necessary to go beyond Ginzbu
Landau theory. Self-consistent-field theory@3–6# ~SCFT! has
proven to be one of the most successful descriptions of e
librium properties of polymer mixtures on a mean field lev
The idea to use SCFT to develop a dynamical mean fi
theory is not new@18–21#, but, although SCFT describe
equilibrium properties well, usually the influence of th
single chain dynamics is neglected due to computational
penses, again leading to a more qualitative than quantita
description of the phase separation. In most calculation
simple constant Onsager coefficient is used that would
appropriate if the movement of the polymers were com
rable to the movement of point particles. Remembering
connectivity of polymers, it is not likely that this local cou
pling is sufficient to lead to a quantitatively correct descr
tion of the dynamics, and other nonlocal Onsager coefficie
have been proposed@22–24#.

In this study we are interested in the early stages of sp
odal decomposition in an incompressible symmetric bin
polymer mixture after a quench from the one phase regio
the two phase region paying special attention to the diff
ences in the collective dynamics when the chains obey lo
©2001 The American Physical Society04-1
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and Rouse dynamics. We therefore employ two dynam
versions of self-consistent-field theory for polymer mixture
The first method, referred to as dynamic self-consistent-fi
theory @18,19# ~DSCFT!, uses the free energy functional o
the SCFT for an incompressible mixture in terms of the lo
composition. This free energy functional leads to a kine
equation for the time dependent local composition tha
integrated numerically. This method has been applied
studying the ordering kinetics in block copolymer and s
factant systems@18,25#. We use both a local and a nonloc
Onsager transport coefficient, as is expected for polym
obeying Rouse dynamics.

The underlying idea of the second method is to expr
the free energy of the investigated system only in terms
the effective external fields, which are thermodynamica
conjugated to the composition. This description leads to
equation of motion for the effective external fields, which
integrated in time. Following Maurits and Fraaije@26# who
derived a similar equation of motion neglecting random flu
tuations, we refer to this method as the external poten
dynamics ~EPD!, which has been shown to automatica
incorporate Rouse dynamics.

The aim of our study is to explore both methods and
investigate the role of the Onsager coefficient. To dec
whether our results resemble any ‘‘real’’ dynamics a co
parison with results obtained through other methods is p
erable. Although many experiments have analyzed spino
decomposition in binary polymer mixtures, only few@27–
29# have looked at early stages of demixing and the influe
of the Onsager coefficient. Another difficulty in comparin
experimental results with our calculations lies in the fact t
actual demixing is influenced by many factors, for examp
preparation of the probe, polydispersity, or strong dynam
asymmetries due to different glass transition temperature
the two species@30,31#. Therefore a quantitative mappin
between theory and experimental systems is difficult.
gain a quantitative insight we compare our mean field ca
lations with results obtained through Monte Carlo simu
tions. No parameters have to be adjusted for this compari
In the simulations we employ the bond fluctuation mod
@32,33# that is well established for studying properties
polymer melts. It has been shown that the equilibrium pr
erties of a polymer mixture as given by the self-consiste
field theory are almost quantitatively reproduced throu
Monte Carlo simulations using the bond fluctuation mo
@34,35#.

Our paper is organized in the following way. In Sec. II w
introduce the self-consistent-field theory for a binary po
mer mixture, explaining how equilibrium properties can
derived with this method. Then we introduce general asp
of the dynamics in a polymer mixture and show how th
can be incorporated in the SCFT leading to dynamic s
consistent-field theory. The following section presents
other approach to including dynamics in SCFT regarding
effective external fields as the time dependent variable.
plications regarding density fluctuations in this descript
are discussed in detail. Section III serves as a brief introd
tion to the performed Monte Carlo simulations and expla
how a direct comparison with SCFT calculations is possib
04180
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In Sec. IV, results of our calculations and simulations a
presented first showing the difference between the use
local and nonlocal coupling, then comparing the mean fi
results with the simulations and finally analyzing the infl
ence of random fluctuations. The paper finishes with a su
mary.

II. SELF-CONSISTENT-FIELD THEORY

We consider an incompressible mixture ofA andB poly-
mers consisting ofn polymers in a volumeV5LxLyLz with
periodic boundary conditions. There arenA polymers of kind
A in the system, forB polymers nB5n2nA . In SCFT
@3,5,6,36# polymers are modeled as Gaussian chains with
end-to-end distanceRe . In addition we choose theA andB
polymers to both have the same number of monomersNA
5NB5N and to be of the same architecture. The over
particle density in the system is denoted asr5nN/V. The
microscopic densityf̂A of the A monomers can be define
through the polymer conformations$ra(t)%,

f̂A5
N

r (
i A51

nA E
0

1

dt d„r2r i A
~t!…, ~1!

0<t<1 parametrizes the contour of a chain. ForB mono-
mers a similar equation holds.~All the following equations
regarding onlyA monomers, are equivalently valid forB
monomers without mentioning this explicitly.! Regarding a
repulsion between the two kinds of polymers that is e
pressed through the Flory-Huggins parameterx, the canoni-
cal partition function has the following form:

Z;
1

nA!nB! E S )
i A51

nA

)
i B51

nB

D@r i A
#D@r i B

#PA@r i A
#PB@r i B

# D
3expF2rE

V
d3 rxf̂Af̂BGd~f̂A1f̂B21!. ~2!

The functional integralD sums over all possible conforma
tions of the chains.PA@r # is the so-called Wiener measure

PA@r #;expF2
3

2Re
2E0

1

dtS dr

dt D 2G , ~3!

which represents the statistical weight of a noninteract
Gaussian chain. Repulsive interactions at short interpart
distances reduce fluctuations of the total density. This is
corporated effectively via the incompressibility constra
that is expressed through thed function in Eq.~2! @37#.

This defines a system with many interacting polym
chains; its partition function obviously cannot be analytica
solved. Inserting new auxiliary field variablesFA , FB , WA ,
andWB via a Hubbard-Stratonovich transformation, we c
reformulate the many-polymer problem in terms of a sin
polymer in external fields.
4-2
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SPINODAL DECOMPOSITION IN A BINARY POLYMER . . . PHYSICAL REVIEW E64 041804
Z;E DFADWADFBDWB d~FA1FB21!

3exp$2F@WA ,WB ,FA ,FB#/kBT%. ~4!

Thus we have found an expression for the canonical
energy depending on the new variables and the single c
partition functionQA ,

F@WA ,WB ,FA ,FB#

kBT
52

f̄ArV

N
ln

QA

nA
2

f̄BrV

N
ln

QB

nB

2
r

NEV
d3r ~WAFA1WBFB!

1
r

NEV
d3r xNFAFB , ~5!

f̄A5NnA /rV denoting the average density of theA poly-
mers in the system and

QA5E D@rA#PA@r #expF2E
0

1

dt WA„r ~t!…G , ~6!

being the partition function of a singleA chain in the externa
field WA .

A. Equilibrium

The functional integral in Eq.~4! also cannot be calcu
lated explicitly. Therefore we employ a saddle point appro
mation. This means that only the largest contribution to
integrand is considered and the integration does not hav
be carried out. The saddle point approximation of Eq.~4! is
equivalent to the minimization of the free energy~5! with
respect to the auxiliary variables. The values of the fields
densities at the saddle point are denoted by lower case le
and are given by the set of equations that has to be so
self-consistently,

dF

dWA
U

wA

50, fA52
f̄AV

QA

dQA

dwA
[fA* @wA#, ~7!

dF

dWB
U

wB

50, fB52
f̄BV

QB

dQB

dwB
[fB* @wB#, ~8!

dF

dFA
U

fA

2
dF

dFB
U

fB

50, wA2wB5xN~fB2fA!, ~9!

fA1fB51. ~10!

The averages of the microscopic densities are given

^f̂A&5fA* and^f̂B&5fB* . Equations~7! and~8! make clear

that in equilibrium the average microscopic density^f̂A&
actually equals the thermal average monomer density
singleA chain in an external fieldwA . In other words, after
starting with a description where we would have to take
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possible interactions of every polymer chain into accou
see Eq.~2!, we have now found a mean field description
the system in which it is sufficient to look at a single chain
an effective external field.

To calculate the monomer densities it is useful to defi
the end segment distributionqA(r ,t), which gives the prob-
ability to find the end of a chain with lengtht at positionr
when exposed to a fieldwA ,

qA~r ,t !5E D@r ~ t !#PA@r ~ t !#d„r ~ t !2r …

3expF2E
0

t

dt wA„r ~t!…G . ~11!

For this end segment distribution the following diffusio
equation holds@3#:

]qA~r ,t !

]t
5

1

6
Re

2¹2qA~r ,t !2wAqA~r ,t !, ~12!

with the boundary conditionqA(r ,0)51. After finding a so-
lution to this equation the monomer density is immediat
given through the following expression:

fA* ~r !5
f̄AV

QA
E

0

1

dt qA~r ,t !qA~r ,12t !. ~13!

The single chain partition function can be calculated with

QA5E
V
d3r qA~r ,1!. ~14!

After having presented all necessary equations to calcu
equilibrium properties of polymer mixtures, we are now i
terested in using this description for calculating the dynam
in a polymer mixture. Two ways to achieve this are intr
duced in the following sections.

B. Dynamic self-consistent-field theory

Because of the fact that the concentrations of the po
mers are conserved the continuity equation is valid,

]fA~r ,t !

]t
1“•J~r ,t !50, ~15!

J(r ,t) denoting the current density of the monomers at po
tion r at time t. One now assumes@22–24# a linear relation
between the current density and the gradient of the excha
potentialm5dF/(dfA)2dF/(dfB) ~note that there is only
one independent chemical potential in the system becaus
the incompressibility constraint!,

J~r ,t !52E
V
dr 83L~r ,r 8!“m~r 8,t !, ~16!

with the kinetic coefficientL(r ,r 8) describing the connec
tion between the force acting on the monomers through
gradient of the chemical potential at positionr 8 and the re-
4-3
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ELLEN REISTER, MARCUS MÜLLER, AND KURT BINDER PHYSICAL REVIEW E64 041804
sulting current density at positionr . This describes a purely
relaxational dynamics, effects due to hydrodynamic flow
not captured. The Onsager coefficientL can be modeled in
different ways. The simplest approach would be local c
pling that results in the Onsager coefficient being prop
tional to the local density. Bearing in mind that polyme
have a certain extension it is clear that nonlocal coupl
should lead to a better description, although local couplin
often used in calculations of dynamic models based
Ginzburg-Landau type energy functionals for simplicity re
sons@12–14#. In the Rouse model, forces acting on a mon
mer caused by the other monomers are also taken into
count @38,39#. This leads to a kinetic factor that i
proportional to the pair-correlation function@22–24,26#.
These two approaches lead to the following Onsager co
cients:

L local~r !5DNfA~r ,t !fB~r ,t ! ~ local coupling!,
~17!

LRouse~r ,r 8!'DNf̄Af̄BP0~r ,r 8! ~Rouse!, ~18!

D denoting the single chain diffusion constant andP0(r ,r 8)
the pair-correlation function. The Rouse Onsager coeffic
written in Eq. ~18! is only approximately valid, when the
pair-correlation function is the same for both polymer sp
cies. A more general expression is found in Ref.@26#.

Another model for nonlocal coupling is the reptatio
model @39,40# that is appropriate for polymer melts wit
very long chains, i.e., very entangled chains. Hereby the i
is that a polymer chain is constrained by the other polym
and is forced to move along the polymer tube axis. T
dynamics is expected@22–24# to also lead to an Onsage
coefficient that is proportional to the pair-correlation fun
tion. Therefore the influence of single chain Rouse and r
tation dynamics on the collective dynamics of the system
qualitatively comparable. Reptation shall not be regarded
the further study.

Equations~15! and~16! lead to the following diffusion
equation, the last term representing noise that obeys
fluctuation-dissipation theorem,

]fA~r ,t !

]t
5“•E

V
dr 83L~r ,r 8!“m~r 8,t !1h~r ,t !. ~19!

After the Fourier transformation this diffusion equation ha
simple form,

]fA~q,t !

]t
52L~q!q2m~q,t !1h~q,t !. ~20!

These diffusion equations implicitly assume that the
laxation time of the chain conformations is smaller than
time scale on which composition fluctuations evolve. T
chain conformations are expected to be ‘‘in equilibrium
with respect to the instantaneous spatially varying comp
tion.

To use the introduced diffusion equation~19! in the frame
of SCFT, let us return to the general expression~4! that
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describes the canonical partition function depending up
the variablesFA , FB , WA , andWB that are independent o
each other. If we now employ a saddle point approximat
in the variablesWA and WB we find Eqs.~7! and ~8! that
describe a unique relation between the fieldswA andwB and
the densitiesfA and fB . This means we can calculate th
densities explicitly with Eqs.~12!, ~13!, and~14! if the fields
wA andwB are known. Therefore with this approximation th
free energyF becomes a function that depends on t
densities ~or fields! only: F†fA ,fB ,wA@fA#,wB@fB#‡
5F@fA ,fB#. With this free energy it is now possible t
calculate the exchange potentialm(r ),

m~r !

kBT
5

dF@fA~r !,fB~r !#

dfA~r !
2

dF@fA~r !,fB~r !#

dfB~r !

5
1

N
$xN@fB~r !2fA~r !#

2„wA@fA~r !#2wB@fB~r !#…%. ~21!

The simple form of diffusion equation~20! and the diffu-
sion equation for the end segment distribution of a polym
chain, Eq.~12!, suggests the use of a Fourier expansion of
spatially dependent variables for actual calculations beca
the Fourier functions are eigenfunctions of the squared g
dient“2. The following set of orthonormal functions is use
in all our SCFT calculations:

f lmn~r !5norm~ l ! norm~m! norm~n!

3cosS 2p l

Lx
xD cosS 2pm

Ly
yD cosS 2pn

Lz
zD

l ,m,n50,1,2, . . . ,

norm~ i !5HA2, iÞ0

1, i 50.
~22!

We have now found all necessary equations to num
cally calculate the time evolution of the densities in a bina
polymer mixture, leading us to the following procedure w
refer to as the DSCFT method. First we have a given den
profile at timet50. As mentioned before, Eqs.~12!, ~13!,
and ~14! give us the possibility to explicitly calculate th
single chain densities for known external fields. Unfort
nately the inversion is needed because we have given de
ties and have to find the matching external fields. This le
to a set of nonlinear equations that are numerically sol
through the Newton-Broyden method@41#. After the external
fields, which ‘‘create’’ the given density profile, have bee
found the exchange potentialm is calculated via Eq.~21! and
then inserted into the diffusion equation~20!. The diffusion
equation is subsequently integrated using a simplifi
Runge-Kutta method. This leads to a new given density a
a discrete time step and the whole procedure starts anew
4-4
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Apart from regarding local dynamics in our DSCFT ca
culations it is favorable to consider nonlocal coupling b
cause this leads to a better description of the dynamics
polymer mixture. However, in DSCFT the difficulty in usin
Rouse dynamics lies in the computational expense of ca
lating the pair-correlation function for each time step. As
approximation during early stages of demixing the pa
correlation function of a homogeneous melt, as it is giv
through the random phase approximation~RPA! @42#, is used
leading to the following Onsager coefficient:

L~q!5DNf̄Af̄B

2~x1e2x21!

x2
, ~23!

x is defined asx5Re
2q2/6 with Re denoting the end-to-end

distance of a polymer.

C. External potential dynamics

In the previously introduced DSCFT method we neede
way to reduce the number of independent variables in
partition function. Through the saddle point approximati
in the fields we obtained a free energy functional in terms
the densities. This, in turn, yields a Langevin equation for
dynamics of the densities. For the EPD method@26# we are
looking for a way to express the dynamics of the bina
polymer mixture through an equation of motion for the e
ternal fieldsWA and WB . Our starting point is again the
canonical partition function~2!. Via a Hubbard-Stratonovich
transformation we introduce the field variablesW5WA
2WB andU5WA1WB and obtain

Z;
1

nA!nB! E S )
i A51

nA

)
i B51

nB

D@r i A
#D@r i B

#PA@r i A
#PB@r i B

# D
3expF2rE

V
d3r

x

4
$~f̂A1f̂B!22~f̂A2f̂B!2%G

3d~f̂A1f̂B21!

;
1

nA!nB! E S )
i A51

nA

)
i B51

nB

D@r i A
#D@r i B

#PA@r i A
#PB@r i B

# D
3E DUDW expF2

rVx

4 GexpF2
r

NEV
d3r H W

2
~f̂A2f̂B!

1
W2

4xNJ GexpF2
r

NEV
d3r

U

2
~f̂A1f̂B21!G . ~24!

This defines a free energy functionG in terms of the fieldsU
andW,

Z;E DUDW exp~2G@U,W#/kBT!, ~25!
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G@U,W#

kBT
52

f̄ArV

N
ln

QA@~U1W!/2#

nA

2
f̄BrV

N
ln

QB@~U2W!/2#

nB

1
r

NEV
d3r F W2

4xN
2

1

2 S U2
xN

2 D G . ~26!

Alternatively, we could have started with the free ener
functional ~4! and integrate out the Gaussian variablesFA
and FB . So far no approximations have been used, but
find an energy functional that only depends uponW we now
employ a saddle point approximation with respect toU,

dG@U,W#

dU
uU* 50, fA* ~r !1fB* ~r !51. ~27!

Here we use the definition, see Eqs.~7! and ~8!, fA* 5

2(f̄AV/QA)(dQA /dWA). For fB* the equivalent definition
applies. In equilibrium the field variableU5WA1WB is
conjugated to the overall density of the system, which
constant in an incompressible mixture. We therefore beli
that the influence of this approximation on the description
the system through the fieldW is very small. We shall dis-
cuss this in detail below.

If we replaceU with theU* @W# that fulfils this constraint
we end up with a free energy functional that only depends
the field variableW,

G@W~r !#

kBT
5

rVx

4
1

r

NEV
d3r

W2

4xN

2
f̄ArV

N
ln

QA@~U* 1W!/2#

nA

2
f̄BrV

N
ln

QB@~U* 2W!/2#

nB
, ~28!

where we have used the fact that adding a constant fieldj to
U* does not change the value ofG@W(r )#. We chosej in
such a way that*V d3r U* 50.

A difficulty in describing the system with the order pa
rameterW is the interpretation of the field fluctuations i
terms of the physical density fluctuations. We can calcul
the averages of the microscopic densitiesafter the saddle
point integration overU. These averages are marked by t
4-5
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subscript EPD. To this end, we introduce a local excha
potentialDm, which couples to the microscopic density d
ferencef̂A2f̂B ,

Z̃@Dm#;
1

nA!nB! E S )
i A51

nA

)
i B51

nB

D@r i A
#D@r i B

#

3PA@r i A
#PB@r i B

# D
3expF2

r

NEV
d3r H Dm

2
~f̂A2f̂B!J G

3E DW expF2
rVx

4 G
3expF2

r

NEV
d3r H W

2
~f̂A2f̂B!1

W2

4xNJ G
3expF2

r

NEV
d3r

U* @W#

2
~f̂A1f̂B21!G

;E DW exp~2G̃@W,Dm#!,

with

G̃@W,Dm#5
rVx

4
1

r

NEV
d3r

W2

4xN

2
f̄ArV

N
ln

QA@~U* 1W1Dm!/2#

nA

2
f̄BrV

N
ln

QB@~U* 2W2Dm!/2#

nB
. ~29!

Thermodynamic averages of the microscopic density dif
ence are obtained via functional derivatives,

^f̂A~r !2f̂B~r !&EPD52
2N

r

1

Z̃@Dm#

dZ̃@Dm#

dDm~r ! U
Dm50

5^fA* ~r !2fB* ~r !& ~30!

^@f̂A~r !2f̂B~r !#@f̂A~r 8!2f̂B~r 8!#&EPD

5S 2N

r D 2 1

Z̃@Dm#

d2Z̃@Dm#

dDm~r !dDm~r 8!
U

Dm50

5^@fA* ~r !2fB* ~r !#@fA* ~r 8!2fB* ~r 8!#&

2
N

r K dfA* ~r !

dWA~r 8!
1

dfB* ~r !

dWB~r 8!
L . ~31!

Similarly, we can calculate the fluctuations of the to
density, which are induced by the saddle point approxim
tion.
04180
e

r-

l
-

Z̃@m#;
1

nA!nB! E S )
i A51

nA

)
i B51

nB

D@r i A
#D@r i B

#PA@r i A
#PB@r i B

# D
3expF2

r

NEV
d3r H m

2
~f̂A1f̂B!J G

3E DW expF2
rVx

4 G
3expF2

r

NEV
d3r H W

2
~f̂A2f̂B!1

W2

4xNJ G
3expF2

r

NEV
d3r

U* @W#

2
~f̂A1f̂B21!G

;E DW exp~2G̃@W,m#!

with

G̃@W,m#5
rVx

4
1

r

NEV
d3r

W2

4xN

2
f̄ArV

NA
ln

QA@~U* 1W1m!/2#

nA

2
f̄BrV

NB
ln

QB@~U* 2W1m!/2#

nB
. ~32!

Moments of the total density averaged over the field confi
rations ofW are given by

2
r

2N
^f̂A~r !1f̂B~r !&EPD

5
1

Z̃@m#

dZ̃@m#

dm~r ! U
m50

,

⇒^f̂A~r !1f̂B~r !&EPD5^fA* ~r !1fB* ~r !&51,

~33!

S r

2ND 2

^@f̂A~r !1f̂B~r !#@f̂A~r 8!1f̂B~r 8!#&EPD

5
1

Z̃@m#

d2Z̃@m#

dm~r !dm~r 8!
U

m50

,

⇒^@f̂A~r !1f̂B~r !#@f̂A~r 8!1f̂B~r 8!#&EPD

512
N

r K dfA* ~r !

dWA~r 8!
1

dfB* ~r !

dWB~r 8!
L . ~34!

These equations describe the actual fluctuations of the mi
scopic composition of the systemafter the saddle point ap-
proximation, i.e., of the EPD method. Having performed
saddle point integration inU, we have ignored fluctuations
4-6
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and we cannot expect Eqs.~31! or ~34! to be accurate. In-
deed, while the incompressibility constraint is fulfilledon
averageEq. ~34! demonstrates that the saddle point appro
mation leads to spurious fluctuations of the total density
Appendix B we use RPA to evaluate Eq.~31! and show
explicitly the deviations between Eq.~31! and the well
known RPA-structure factor.

Alternatively, we can deduce the exact averages from
full free energy functionalG@U,W# in Eq. ~26! by introduc-
ing a local exchange potentialDm like in Eq. ~29!. After a
variable substitutionW1Dm→W this leads to

G̃@U,W,Dm#5G@U,W#2
r

NEV
d3r

2Dm212DmW

4xN
.

~35!

With this free energy functional we obtain the exact avera
of the microscopic densities,

^f̂A~r !2f̂B~r !&UW52
1

xN
^W&UW , ~36!

^@f̂A~r !2f̂B~r !#@f̂A~r 8!2f̂B~r 8!#&UW

5
22d~r2r 8!

rx
1

1

~xN!2
^W~r !W~r 8!&UW .

~37!

Recently, Ganesan and Fredrickson@43# have used a com
plex Langevin method to sample the fluctuations of b
fields U and W, and have obtained the averageA-monomer
density aŝ fA* &UW . SinceU has to be complex to make th

last term in Eq.~24! a proper representation ofd(f̂A1f̂B
21) individual contributions to this average also have
imaginary part and the numerical procedure is quite
volved.

We expect the saddle point integration overU to be ac-
curate wheneverG@U,W# can be well approximated by
parabola inU2U* . In this case the fluctuations ofW are
only very little affected by the saddle point approximation
U and the fluctuations ofW in the EPD method will closely
mimic the fluctuations ofW of the exact partition function
~24!. Hence, we can use Eq.~37! with ^W(r )W(r 8)&UW
'^W(r )W(r 8)& ~i.e., after the saddle point approximation!
to obtain a very good approximation for the structure fact
In Appendix B we confirm that in RPA the fluctuations ofW
are, of course, not affected by the saddle point integra
over U. Therefore we use the Fourier transform of Eqs.~36!
and ~37! in our calculations,

^fA~q!2fB~q!&52
1

xN
^W~q!& , ~38!

^ufA~q!2fB~q!u2&52
2

rVx
1

1

~xN!2
^uW~q!u2& .

~39!
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Because the composition is conserved and^f̂A2f̂B&
;^W&, we expect the order parameterW with which we are
now describing our system to also be a conserved quan
Therefore the dynamics ofW are given through the relax
ational dynamics of a modelB system, referring to the clas
sification introduced by Hohenberg and Halperin@44#.

]W~r !

]t
5“ r•E

V
L~r ,r 8!“ r8mW~r 8!1h~r ,t !, ~40!

with the chemical potential being the first derivative of t
free energy with respect to the order parameter,

mW~r !5
dG@W~r !#

dW~r !
5

1

N2xN
$W1xN@fA* ~r !2fB* ~r !#%.

~41!

The Fourier transform of this new diffusion equation is

]W~q!

]t
52L~q!q2

1

2NxN
$W~q!1xN@fA* ~q!2fB* ~q!#%

1h~q!, ~42!

h is white noise that obeys the fluctuation-dissipation th
rem. The method using this diffusion equation we refer to
the EPD method@26#.

We have found a diffusion equation that describes
dynamics in terms of the external fieldW5WA2WB and
leads to the right physical equilibrium. A similar equatio
without noise has been derived by Maurits and Fraaije@26#.
The question to be asked is whether this dynamics repres
any actual physical dynamics and how the choice of the O
sager coefficient influences the dynamics of the densitie
can be shown@26#, see also appendix A, that using loc
coupling in the EPD method is a good approximation
Rouse dynamics. The Onsager coefficient that we wo
have to use in DSCFT to reproduce Rouse dynamics is g
in Eq. ~18!. The equivalent~local! kinetic coefficient in the
EPD method for the same dynamics of the densities is

LEPD522xND. ~43!

For the EPD calculations again the Fourier expansion
Eq. ~22! is used. After having found the initial fields tha
create the given densities with the methods used for
DSCFT, the chemical potentialmW is calculated according to
Eq. ~41!. mW is then plugged into Eq.~42! to find the time
derivative of the difference in the fields. Thereafter]W/]t
5]WA /]t2]WB /]t is integrated via the simplified Runge
Kutta method. After we have found the newW5WA2WB ,
we need to find the variableU* to make sure the incom
pressibility constraintfA* 1fB* 51 given through the saddle
point approximation~27! is fulfilled again using the Newton
Broyden method. The new fields lead us to the new chem
potential to calculate]W/]t5]WA /]t2]WB /]t and so
forth.

The method of the EPD has two main advantages co
pared to DSCFT. First of all it incorporates nonlocal co
pling, and second, it proves to be up to an order of mag
4-7
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tude computationally faster. There are two main reasons
this huge speed up: In EPD the number of equations
have to be solved via the Newton-Broyden method to fu
incompressibility is just the number of Fourier functio
used. The number of equations in DSCFT that have to
solved to find the new fields after integrating the densitie
twice as large. On the other hand, comparing diffusion eq
tion ~19! used in the DSCFT method with Eq.~40! in EPD, it
is easily seen that the right-hand side of the latter is a sim
multiplication with the squared wave vector of the releva
mode, whereas the right-hand side of Eq.~19! is a compli-
cated multiplication of three spatially dependent variable

III. MONTE CARLO SIMULATIONS

A. Bond fluctuation model

The Monte Carlo simulations presented in this study m
use of the bond fluctuation model@32,33#, which is a coarse
grained lattice model, that incorporates the relevant featu
of polymers. These are connectivity of the monomers alon
chain, excluded volume of the segments, and thermal in
action between monomers. In this model each effec
monomer occupies a cube of the lattice and blocks the e
sites at the cube corners for other monomers. Monomers
chain are connected by one of 108 possible bond vector
length 2,A5, A6, 3, orA10 measured in units of the lattic
spacing.~All following lengths are assumed to be given
these units unless an explicit unit is given.! These bond vec-
tors are chosen to ensure the excluded volume condit
which makes sure that they do not cross each other du
their movement. This large number of possible bond vec
allows 87 different bond angles, which provide a good a
proximation for continuous connectivity between the mon
mers of the chain. Each of the effective monomers repres
three to five real chemical repeat units@45,46#. The number
density of the occupied sites is chosen to ber51/16, which
reproduces the properties of a polymer melt well. Inter
tions between the monomers are modeled through a sq
well potential with monomers of the same kind attracting a
monomers of different kinds repelling each other. The int
actions are chosen to be symmetric and to act inside a ra
that extends over the first peak of the pair correlation fu
tion. This means the interactions act up to a distance ofA6
that is equivalent to the 54 neighboring cubes of a monom

2eAA52eBB5eAB5H kBTe>0, for r<A6

0, for r .A6.
~44!

The moves used to simulate a purely diffusive movem
of the monomers are local random monomer hopping mo
where one tries to move a randomly picked monomer t
neighboring lattice site.

B. Comparison between SCFT calculations and Monte Carlo
simulations

The Monte Carlo simulations were carried out with cha
of 64 effective segments in a box with lengthL5160. With
an overall number density ofr51/16 there are 256 000 pa
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ticles in the system. In the Monte Carlo simulations, ho
ever, the choice ofN564, which is equivalent to a polymer
ization of 200–300 in real polymers, is a compromi
between the possibility to compare the simulation resu
with mean field results and the largest still sensibly mana
able amount of computational resources, because an incr
in the polymerization leads to both an increase in the len
scale and a slowing down in the kinetics of phase separat
To actually compare Monte Carlo simulations with SCF
calculations the parameters of both models have to map
onto each other.

In SCFT the only present length scale is the end-to-e
distanceRe of the polymers. It can be measured directly
the Monte Carlo simulationsRe5ANb525.12. This gives us
the length of the system to beL516056.35Re .

In the SCFT calculations, only the combinationxN of the
Flory Huggins parameter and chain length enters. This
the temperature scale. The Flory Huggins parameterx can be
calculated from the interaction parametere of the square
well potential defining the interaction between monomers
the Monte Carlo simulations with the following relation@47#:

x5
1

kBT
zeffFeAB2

1

2
~eAA1eBB!G52zeffe, ~45!

zeff is the effective coordination number in the bulk, i.e., t
average number of intermolecular contacts per monom
We hereby speak of contacts, if the distance between
monomers is smaller thanA6.

The average compositionf̄A is a parameter of the SCFT
the total number densityr of monomers is only required i
fluctuations are considered.

The single chain diffusion constantD, which can be ex-
tracted from the Monte Carlo simulations by measuring
mean square displacements of the chains, gives the
scale t5Re

2/D51.53107 Monte Carlo steps~MCS!. t is
constant becauseD and Re are almost independent of tim
and composition@48#.

The length of the chains used in the Monte Carlo simu
tions is N564. This is somewhat larger than the entang
ment lengthNe'32 @45,46#, therefore, we are in a crossove
regime between Rouse dynamics and reptation@49,50#. This
means, when we are comparing dynamic mean field res
with Monte Carlo results we expect to find a reasona
agreement if we regard Rouse dynamics.

This identifies all parameters of the SCFT calculatio
~without noise!. If we neglect fluctuations, systems wit
identical xN, Re , and composition but different degree o
interdigitationrRe

3/N @34,51# and statistical segment lengt
b5Re

2/N give identical results. The degree of interdigitatio
controls the strength of fluctuations and mean field theor
believed to be correct in the limitrRe

3/N→`. The statistical
segment length sets the smallest length scale for which
Gaussian description of polymers is valid. If we were inte
ested in the structure on smaller length scales we would h
to use a different chain model~e.g., wormlike chain@52,53#!.
4-8



o
a

h
o

s
h
e
y
n
fo
to
in
e
i
y
th

th
p

s-
F
th

th
ch
ult-
so

be
lso
see

the
s a
are
are

e
fluc-

y
ge-
led

. In

nal
he
rly
r
ntal
er
n a
es
to

rate
e
in

er

ag
n
e

m
sti
we

ale

ree-

ro-

SPINODAL DECOMPOSITION IN A BINARY POLYMER . . . PHYSICAL REVIEW E64 041804
IV. RESULTS

In the following sections we regard the early stages
spinodal decomposition after a quench from the one ph
region with xN50.314 into the miscibility gap withxN
55 for a symmetric binary polymer mixture. For muc
larger incompatibility the width of the interface becomes
the order of the statistical segment length, and propertie
this length scale cannot be described by the Gaussian c
model. For smaller incompatibilities—in the vicinity of th
critical point xN52—composition fluctuations are ver
strong~i.e., non-Gaussian! and the mean field approximatio
becomes worse. We will first show some general results
the dynamical mean field theory. We will then carry on
compare these results with Monte Carlo simulations show
what role the Onsager coefficient plays. After having n
glected random statistical fluctuations in SCFT so far we w
explain how fluctuations are implemented into the two d
namic mean field theories and discuss their influence on
dynamics.

A. General aspects of spinodal decomposition

If a system is quenched from the one phase region into
two phase region the linearized theory of spinodal decom
sition @9–11# predicts that fluctuations with wavelengthsl
larger than a critical valuelc , i.e., wave vectorsq below a
critical valueqc , start growing spontaneously. This is illu
trated in Fig. 1 showing results obtained through DSC
with local coupling in a one-dimensional system. Before

FIG. 1. Density profiles at different times during demixing aft
a quench fromxN50.314 toxN55 in a one-dimensional system
using 12 eigenfunctions. The upper panel shows the early st
when concentration fluctuations with wavelengths between o
third and one-fourth of the system size are amplified. In the low
panel later stages are displayed–the concentration inside a do
slowly saturates leading to sharp interfaces between the coexi
phases. Note the change of scale on the composition axis bet
the two panels.
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quench at timet50 we have a homogeneous mixture wi
random statistical density fluctuations. After the quen
these fluctuations are amplified. It is apparent that the res
ing density profile is well describable with plane waves,
that the set of basis functions we have chosen proves to
not only technically convenient for the calculations but a
describes the physical phenomena well. At later times we
that the mode with the wavelength about one-third of
system size is amplified most until at even later stage
saturation inside domains takes place until these domains
separated by sharp interfaces. Later stages of demixing
not appropriately described within our purely diffusiv
model because hydrodynamic mechanisms and random
tuations are neglected but play a dominant role.

Linearized Cahn-Hilliard-Cook theory@9–11# predicts an
exponential behavior for the density modesfA(q);eR(q)t as
long as the differencefA(r )2f̄A between the actual densit
and the average density is small. Starting with a homo
neous mixture before the quench this requirement is fulfil
during early demixing. Our density coefficientsfA(q) are
equivalent to the actual, but discretized, density modes
Fig. 2 some of the coefficientsfA(q) are displayed versus
time. These results were obtained for a three-dimensio
system using DSCFT with a local Onsager coefficient. T
exponential behavior is obviously well reproduced for ea
times. For larger values ofq the exponential behavio
changes earlier. This is also in agreement with experime
results@54#. The faster growth of density modes with small
wave vectors leads to the creation of small domains o
length scale;1/q. These domains then cause density mod
with wavelengths smaller than the extension of the domain
be damped. Fig. 3 shows the corresponding relaxation
R(q) versusq. We see that for wave vectors with a valu
belowqc an exponential growth of the density modes sets

es
e-
r
ain
ng
en

FIG. 2. Several density modes displayed on a logarithmic sc
versus time. The displayed values ofq are given in units of 1/Re .
The results were obtained through DSCFT calculations in a th
dimensional system of lengthLx5Ly5Lz56.35Re using 73737
functions for a quench fromxN50.314 toxN55. The expected
exponential behavior during early stages of demixing is well rep
duced.
4-9
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whereas forq.qc initial fluctuations are damped. In th
growth region there is a maximum. The two dashed lin
framing our results are the relaxation rates for temperatu
just below the critical temperature~weak segregation limit,
WSL! and for very low temperatures~strong segregation
limit, SSL! as they are given by the Cahn-Hilliard-Coo
theory,

R~q!

q2
522L~0!@xS~f̄A!2x#S 12

q2

qc
2D , ~46!

with

qc5
A2k

Re

Af̄A~12f̄A!@xN2xS~f̄A!N#1/2

5
Ak

Re
~xN/221!1/2. ~47!

The last line is only valid for symmetric mixtures withf̄A

5f̄B50.5 when the spinodal point lies atxSN52. k is
found to be 18 in the WSL@23# and 12 in the SSL@55#. The
maximum growth rate is found forqm5qc /A2. With xN
55 lying between the SSL and the WSL our result was to
expected. The influence of Rouse dynamics on the relaxa
rate is displayed in Fig. 4. Here we have presented results
a two-dimensional system using DSCFT with Onsager co
ficients describing both local kinetics and Rouse kinetics
an approximately homogeneous mixture and EPD. The E
and the DSCFT results using Rouse dynamics are virtu
identical, but remembering that the EPD method is com
tationally much more favorable, this method should be u
when Rouse kinetics is considered. Local and nonlocal c
plings lead to distinct differences in the relaxation rates:

FIG. 3. Corresponding relaxation rate to the density modes
played in Fig. 2. Below a critical wave vectorqc the density modes
are increased spontaneously. Modes with larger wave vectors
damped. As expected the results are found to be between the
limits of weak~WSL! and strong segregation~SSL! as given by the
Cahn-Hilliard-Cook theory.
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the range 0<q<qc nonlocal coupling leads to a reduction o
the relaxation rate and a shift of the maximum to sma
values of the wave vector. Also in the regionq.qc the ini-
tial density fluctuations are not as strongly damped as
local dynamics.

Note that the difference in growth rate between the lo
dynamics in the WSL and SSL is very similar in magnitu
to the difference in growth rate between the full SCFT c
culation using a local or a Rouse-Onsager coefficient. T
demonstrates that the square gradient expression for the
energy is not sufficiently accurate: quantitative deviatio
from experiments or simulations might be either due to
additional approximations of the square gradient approac
the wave vector dependence of the Onsager coefficient
compare simulations and theory quantitatively and to extr
the interplay between single chain dynamics and the kine
of collective composition fluctuations, a quantitative se
consistent-field calculation is required.

B. Comparison between Monte Carlo results and dynamic
mean field results

The Monte Carlo simulations were performed on a Cr
T3E using a trivial parallelization scheme running 64 co
figurations in parallel to achieve good statistics. 5 400 0
MCS were performed that is equivalent to 45 days of C
time per processor. The EPD and DSCFT calculations,
results of which are presented in this section, are for a th
dimensional system using 737375343 basis functions.
The equivalent of 12 700 000 MCS were performed tak
approximately 65 days on a Cray J90.

The global structure factor defined by

S~q,t !5K E
V
d3r$fA~r ,t !2fB~r ,t !%2eiq•rL , ~48!

is an important experimentally measurable quantity for
description of the phase separation process. In Fig. 5

s-

re
wo

FIG. 4. Relaxation rates obtained through two-dimensio
DSCFT calculations using local and Rouse dynamics and EPD
culations. The DSCFT results using the pair-correlation function
a homogeneous melt and the EPD results are in good agreem
4-10
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global structure factor is plotted versus wave vectorq for
different times, thin lines denoting SCFT results, wide lin
with the same symbols corresponding Monte Carlo simu
tion results.~Because the SCFT calculations could only
performed for a single starting configuration instead of
like in the Monte Carlo simulations, for the initial time, th
global structure factor of a homogeneous mixture given
RPA @42# was used. Global structure factors for later tim
were extracted through the exponential time dependenc
the density modes in the SCFT calculations.! Part ~a! com-
pares Monte Carlo with local kinetics and part~b! compares
Monte Carlo with Rouse kinetics. Figure 5~a! clearly shows

FIG. 5. Global structure factor versus wave vector for differe
times. Broader lines represent Monte Carlo results, thin lines w
the same symbols the corresponding DSCFT results. Panel~a! com-
pares DSCFT with local coupling with the Monte Carlo simu
tions. Local dynamics obviously overestimates the growth rate
shifts the maximum growth rate to larger values. Panel~b! com-
pares Rouses dynamics with Monte Carlo results showing be
agreement. The inset graphs show the behavior of the global s
ture factor in the area ofqc . While the mean field results lead to
common intersection point definingqc , the Monte Carlo lines do
not cross each other in a single point making the definition ofqc

impossible.
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no quantitative agreement between DSCFT with local kin
ics and the Monte Carlo simulations. The peak in SC
grows much quicker and also the position of the peak is
far right. As has been mentioned before, including Rou
dynamics leads to a reduction of the relaxation rate in
growth region and the wave vector with the maximu
growth rate is shifted towards a smaller value. Figure 5~b!
satisfies these expectations. The position of the peaks
SCFT and Monte Carlo almost coincide and the growth ra
of the peak are much closer to each other although SCFT
overestimates the growth rate. A more detailed compariso
possible if we plot the corresponding relaxation rates ver
the wave vector. As we have seen before, the modes of
density calculated with the dynamic mean field theory follo
a clear exponential behavior. To derive the relaxation rate
the global structure factor, we need to plot the modes of
global structure factor on a logarithmic scale versus tim
This is done in Fig. 6 for some randomly chosen values oq.
The modes with aq value smaller than the critical valueqc
derived through DSCFT show a clear exponential behav
This behavior changes with time, especially, the bigger
value ofq of the growing mode, the sooner the change in
exponential behavior takes place. This is qualitatively
agreement with the results we obtained through dyna
mean field theory, see Sec. IV A. Modes withq*qc are
more or less constant in our figure. Therefore an estima
of qc from the Monte Carlo results alone would suffer fro
some ambiguity, of course, this is not only because the
curacy of the Monte Carlo results is limited, but is a mat
of principle @8#. The interplay of fluctuations and nonlinea
effects has the consequence that a well-definedqc does not
exist. For times earlier than the displayed interval, rand
fluctuations influence the behavior of the modes so stron
that an exponential behavior is not visible. The relaxat
rates resulting from the fits to the points in Fig. 6 for the tw
different time intervals indicated through the solid lines a

t
h

d

er
c-

FIG. 6. Global structure factor versus time for a few random
chosen values ofq. The values of the wave vectors are given
units of 1/Re . qc corresponds to the critical wave vector extract
from DSCFT. An exponential growth of the modes is found. Mod
with a smaller growth rate change their exponential behavior ea
than those growing faster.
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the corresponding mean field relaxation rates are displa
in Fig. 7. Only the exponential behavior of the earlier of t
two marked time intervals may be interpreted as the expe
behavior of early spinodal decomposition. For later time
gradual change away from the exponential behavior sets
The second fit shows an apparent exponential behavior
cause the time interval is too small to resolve the chan
Hence the resulting ‘‘relaxation rate’’ for the later time in
terval may only be treated as an indication for the deviat
from the earlier exponential behavior. Part~a! shows the re-
laxation rate for DSCFT with local dynamics in the tim
interval 0<t<13107 MCS and the Monte Carlo results fo
the two time intervals 7.253105<t<1.53106 MCS and
1.923106<t<2.633106 MCS; part~b! shows the same re

FIG. 7. Corresponding relaxation rates to Fig. 5. Panel~a! com-
pares the Monte Carlo relaxation rates with DSCFT calculati
with local dynamics. Panel~b! compares Monte Carlo results wit
EPD and DSCFT calculations with Rouse dynamics. For ear
times good agreement in the growth region is found but Mo
Carlo simulations show an earlier change in the exponential be
ior. The inset figures are the corresponding Cahn plots, where
displaysR(q)/q2 versusq2.
04180
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ed
a
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n

sults but regarding Rouse dynamics through the use of E
and DSCFT with Rouse dynamics. The inset figures are
corresponding Cahn plots displayingR(q)/q2 versusq2. As
is obvious from the behavior of the global structure fact
local dynamics gives a relaxation rate that is much too la
and the wave vector of the maximal growth rate is also
big. The Cahn plot of the mean field relaxation rate sho
the linear behavior, which is expected for local couplin
This is in strong disagreement with the Monte Carlo resu
For Rouse dynamics we actually find an almost quantita
agreement for earlier times in the region of the posit
growth rate. For later times, however, the relaxation rate
creases in the Monte Carlo simulations—this has also b
observed in experimental studies@27#—, while SCFT still
shows the same exponential behavior as is found for ea
times. In the Cahn plot we see that Rouse dynamics lead
a nonlinear run ofR(q)/q2 versusq2. This is obviously also
the case for the simulation results and is in agreement w
earlier simulations@15–17# and experimental observation
@27–29#. This nonlinear behavior of the Cahn plot is relat
to the fact that we consider a deep quench, for whichqcRe
.1 @22#. For a shallow quench, for whichxN exceeds the
critical value xcN52 @42# only slightly, one hasqcRe,1
@22#, and then the theory would yield a linear Cahn plot, a
consistent with corresponding observations@8#. The latter
case is less interesting, however, because then the poly
mixture is to a large extent equivalent in behavior to a flu
mixture of small molecules, and there is no longer an eff
of internal Rouse relaxation modes on the phase separa
dynamics in this limit.

If we now compare our results for larger wave vectors
see big discrepancies independent of the chosen dynami
SCFT: Atqc the structure factor is independent of time in t
early stages of the SCFT calculations, i.e., structure factor
different times exhibit a common crossing point atqc , see
the inset graphs of Fig. 5. No such intersection occurs in
simulation data. Mean field theory damps the density mo
with q.qc while Monte Carlo simulations lead to a relax
ation rate fluctuating around zero. This behavior is also s
in the global structure factor, see Fig. 5. The right side of
SCFT peak decays fast, while the Monte Carlo peak is m
broader with a slower decay. Both the earlier change of
exponential behavior and the form of the relaxation rate
larger wave vectors are the result of random fluctuations.
was expected, the influence of fluctuations during the v
early stages of spinodal decomposition on the growth of
density modes is rather small, but they are crucial for sma
wavelengths and determine the change in the expone
behavior, because random fluctuations cause some mod
reach an amplitude where the nonlinear regime sets in ea

C. The influence of random fluctuations

The diffusion equations we have used so far are co
pletely deterministic, but obviously in all dynamic process
random statistical fluctuations are present. To regard th
fluctuations we have to add a random forceh to our diffu-
sion equations~19! and ~40! that is linked to the Onsage
coefficient through the fluctuation-dissipation theorem,

s

r
e
v-
ne
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^h~r !&50,

^h~r ,t !h~r 8,t8!&52kBTL~r ,r 8!¹2d~r2r 8! d~ t2t8!,
~49!

or Fourier transformed,

^hq&50,

^hq~ t !h2q~ t8!&5^uhqu2&52kBTL~q!q2d~ t2t8!.
~50!

In our calculations the diffusion equation is integrat
through discrete time intervalsdt that are determined
through the Runge-Kutta scheme. In DSCFT, for examp
we use the Langevin equation

fA,q~ t1dt !5fA,q~ t !1dtL~q!q2mq1 f q~dt !, ~51!

with f q(dt) expressing random fluctuations that obey t
fluctuation-dissipation theorem@56,57#,

f q~dt !5A2L~q!q2Adt r , ~52!

r is a random number with the properties^r &50, ^r 2&51.
The analogf q(dt) is used to perform EPD calculation

with fluctuations. The difficulty in this case is to interpret th
resulting fluctuations of the external fieldW5WA2WB in
terms of the densityF5(fA2fB)/2. As we have seen in
Sec. II C the field and the density fluctuations are linked
each other through Eqs.~38! and ~39!.

To ensure that the way the fluctuations are included
correct and the validity of these Eqs.~38! and~39! is given,
we consider a homogeneous,xN51.8, one-dimensional sys
tem with lengthLx56.35Re using both DSCFT and EPD
From the DSCFT calculations we derive^uFqu2& for each
wave vector while the EPD method leads to^uWqu2&. In both
cases we averaged over 10 000 snapshots of the dens
the field made during their time evolution. In Fig. 8^uFqu2&
and ^uWqu2& are plotted versusq. The solid line is the ex-
pected result from RPA. For larger values ofq we find good
agreement, but the amount of used configurations was
enough to find reliable results for smaller values ofq because
the correlation times are much longer due to the diffus
dynamics. If we plot̂ uFqu2& versus^uWqu2&, as is done in
Fig. 9, we find good agreement of our data with the expec
linear behavior.

After having proven that the above treatment of rand
fluctuations leads to the expected behavior, we focus on
influence of fluctuations on spinodal decomposition. Mo
Carlo results show that the exponential behavior chan
earlier than in SCFT calculations without fluctuations resu
ing in a reduced relaxation rate. The relaxation rates for
ferent time intervals obtained through the Monte Carlo sim
lations and the EPD method are presented in Fig. 10.
EPD results were obtained by averaging the time evolu
of the fields of 64 two-dimensional configurations. For e
lier time intervals the relaxation rate is quantitatively ve
similar to the rate without fluctuations in the region belo
qc . For later times, however, when calculations without flu
04180
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tuations still show the same exponential behavior, the re
ation rate is reduced as is also seen in the Monte Carlo si
lations. In the range aboveqc the modes of the fields o
densities do not follow an exponential behavior but fluctu
around zero. Consequently the relaxation rate is not w
defined in this region leading to strong fluctuations of t
relaxation rate in Fig. 10. For very early times when t
density modes are still of the order of the fluctuations of
homogeneous system it is also not possible to see an e
nential behavior because the density changes caused thr
random fluctuations conceal the growth of the modes dur
very early spinodal decomposition.

FIG. 8. The averagêuFqu2& derived with DSCFT and̂uWqu2&
derived with EPD displayed versusq. Both calculations are valid
for a homogeneous,xN51.8, one-dimensional system with leng
L56.35Re . For larger values ofq good agreement with the RPA
averages is found. For smaller values ofq too few independent
configurations of the system were taken into account.

FIG. 9. The linear behavior expressed in Eq.~39! is well repro-
duced, as we can see, when^uFqu2&, obtained through DSCFT, is
displayed versuŝuWqu2&, obtained through EPD. The points to th
right correspond to small wave vectors, those on the left to la
wave vectors. The solid line is the corresponding RPA result.
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V. SUMMARY

In this study we analyzed the influence of single ch
dynamics on the collective diffusion during early stages
spinodal decomposition in a symmetric binary polym
blend. We used the SCFT for polymer mixtures to explo
two versions of dynamical mean field theory. The sing
chain dynamics enters these descriptions through an Ons
coefficient. The first method we call DSCFT propagates
densities in time and gives us the possibility to model b
local dynamics and approximately the nonlocal dynamics
expect for the Rouse model. In DSCFT the correct treatm
of Rouse dynamics would involve the calculation of the pa
correlation function at every time step, which is compu
tionally a rather expensive task. On the other hand dur
early stages of demixing, the mixture is only weakly inh
mogeneous so that the use of the pair-correlation functio
a homogeneous mixture, which is analytically known, ser
as a sufficient approximation. In the second method the
stantaneous configuration is not described by the dens
but by the effective external field~EPD!. We find a Langevin
equation for the external field, which using ‘‘local’’ kinetic
in the fields is found to describe a polymer mixture w
Rouse dynamics. Apart from ‘‘automatically’’ includin
Rouse dynamics, this EPD method has the big advantag
being up to an order of magnitude computationally fas
than the DSCFT method.

First numerical calculations with these methods for
quench from the one phase regionxN50.314 to the two
phase regionxN55, neglecting random fluctuations, show
clear exponential behavior of the density modes, as was
pected for a mean field description. The relaxation rate of
density mode is strongly influenced by the choice of
Onsager coefficient: In the growth region Rouse dynam
reduces the relaxation rate compared to local dynamics
the position of the maximum growth rate is shifted to sma
values ofq. Forq.qc , however, Rouse dynamics causes
modes to be damped less quickly. We also find good ag

FIG. 10. Relaxation rates obtained through Monte Carlo sim
lations and EPD calculations in two dimensions with random fl
tuations for different time intervals. Fluctuations lead in both me
ods to an earlier change in the exponential behavior of
increasing modes.
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ment for early stages between the DSCFT method using
pair-correlation function for the homogeneous system a
the EPD method.

To quantitatively test these mean field predictions
compare them with results obtained through Monte Ca
simulations employing the bond fluctuation model. T
chains used in these simulations are expected to show R
behavior because of the chosen chain lengthN564. The
comparison is possible without any adjustable parameter.
compare the global structure factor, which is the experim
tally accessible quantity, and the relaxation rates. Local
namics in DSCFT overestimates the growth of the glo
structure factor by far, but the agreement is better for Ro
dynamics especially for earlier times. Neglecting rando
fluctuations in our mean field calculations proves to be j
tified for wave vectors with positive relaxation rates and e
lier times, but should be included to investigate later time

Fluctuations can easily be included in DSCFT and EP
The difficulty in the EPD method is the fact that the fie
fluctuations have to be interpreted in terms of the phys
density fluctuations. We can find a relation between the fi
and the density fluctuations. EPD calculations with fluctu
tions lead to an earlier change in the exponential behavio
the density modes as was also the case for the Monte C
simulations. The missing dampening of the modes withq
.qc as is found in the simulations is also reproduced.

We have seen that the single chain dynamics has a
nounced influence on the collective dynamics of a polym
mixture. Comparing quantitatively Monte Carlo simulatio
and dynamical mean field theory we have validated the m
field calculations. Note, however, that we have considere
deep quench far below the critical point; for shallo
quenches close to the critical point, mean field theories
not expected to be accurate. The later stages of spin
decomposition are not accessible with either method. Dur
later times hydrodynamical interactions become importa
Lattice model Monte Carlo simulations lack a hydrodynam
cal mechanism. In dynamical mean field calculations hyd
dynamic coupling can be included@58,59#, and hence, they
can be extended beyond the validity of the lattice model.
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APPENDIX A: REPRESENTATION OF ROUSE DYNAMICS
THROUGH EPD

As mentioned before it is possible to show that the E
method using local coupling is a good approximation
reproducing Rouse dynamics of the physical densities.
derivation of the EPD method we present in this section w
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introduced by Maurits and Fraaije and can be found
Ref. @26#.

Following the method we used to include dynamics in
SCFT to achieve the DSCFT method, we employ a sad
point approximation in the external fields that leads to
bijective relation between the external fieldswA andwB and
the densitiesfA and fB . This means we can choose wi
which of the two variable sets we would like to calculate. O
the other hand the pair-correlation function that is part of
Rouse-Onsager coefficient can be expressed as the funct
derivative of the density with respect to the external pot
tial, see also Eq.~B13!.

dfA~r !

dwA~r 8!
52

f̄A

N
P0~r ,r 8!. ~A1!

To calculate inw space we have to transform the time d
rivative of the densities according to the chain rule

]fA~r ,t !

]t
5E dfA~r ,t !

dwA~r 8,t !

]wA~r 8,t !

]t
dr 83

52
f̄A

N E P0~r ,r 8!
]wA~r 8,t !

]t
dr 83. ~A2!

Combining this equation with the diffusion equation f
Rouse dynamics, Eq.~18!, this leads us to

2
f̄A

N E P0~r ,r 8!
]wA~r 8,t !

]t
dr 83

5D
f̄A

N
“ r•E

V
P0~r ,r 8!“ r8mA~r 8!dr 83. ~A3!

Using the approximation

“ rP0~r ,r 8!>2“ r8P0~r ,r 8!, ~A4!

one easily arrives at

2E
V
P0~r ,r 8!

]wA~r 8,t !

]t
dr 83

5DE
V
P0~r ,r 8!¹ r8

2 mA~r 8!dr 83, ~A5!

leading to an equation of motion for the external fields,

]wA~r !

]t
52D“

2mA~r !. ~A6!

Approximation~A4! is obviously exactly valid for a homo
geneous mixture, because the pair-correlation function o
depends on the distanceur2r 8u between two points. In the
inhomogeneous case, ifr and r 8 are in different phases an
neither of them in the interface,“ rP0(r ,r 8) and
“ r8P0(r ,r 8) are of different sign making this approximatio
justifiable even if the actual values differ.
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Because of the incompressibility constraintmA andmB are
not independent of each other. There is only one indepen
chemical potentialm5mA2mB so the equation of motion fo
the external fields that is to be used in our case has the fo

]wA~r !

]t
2

]wB~r !

]t
52D“

2m~r !. ~A7!

If we compare this equation with Eq.~40! we see that den-
sities evolving in time according to Rouse dynamics are w
described through the EPD method if a local kinetic coe
cient as given in Eq.~43! is used.

APPENDIX B: RANDOM PHASE APPROXIMATION
FOR THE FLUCTUATIONS IN EPD

The single chain partition functionQ is defined through
@compare with Eq.~6!#

Q5E D@r1#P1@r #expF2
r

NEV
d3r W~r !f̂1~r !G ,

~B1!

where f̂1(r )5(N/r)*ds d„r2r (s)… denotes the single
chain density. We now expect the system to be only wea
inhomogeneous, i.e., meaning the density and the exte
field only differ a little from the average value:f̂1(r )
5N/rV1df1(r ); W(r )5W̄1dW(r ). The density and the
external field are presented as a Fourier expansion,

f̂1~r !5N/rV1 (
qÞ0

f̂qe
iq•r, f̂q5

1

VEV
d3r f̂1~r !e2 iq•r.

~B2!

This Fourier expansion is now inserted in Eq.~B1!,

Q5E D@r1#P1@r #expF2W̄2
rV

N (
qÞ0

Wqf̂2qG
5exp@2W̄#E D@r1#P1@r1#H 12

rV

N (
qÞ0

Wqf̂2q

1
r2V2

2N2 (
q,q8Þ0

WqWq8f̂2qf̂2q81•••J
5exp@2W̄#Q0K 12

rV

N (
qÞ0

Wqf̂2q

1
r2V2

2N2 (
q,q8Þ0

WqWq8f̂2qf̂2q81•••L
0

. ~B3!

Q0 denotes the partition function of a single chain without
external field. The average in the last line is to be taken o
all chain configurations that are possible when there is
external field present. Because the average deviation of
density^df&0 from the average value is zero if there is n
external field,̂ fq&050 is valid. The averagêf2qf2q8&0 is
4-15
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given through the single chain structure factorS0(q) of a
Gaussian chain:̂f2qf2q8&05N/(r2V2)S0(q)d2q,2q8 . Ne-
glecting higher terms, we obtain the RPA result for the sin
chain partition function

QRPA5exp@2W̄#Q0 expF 1

2N (
qÞ0

S0~q!uWqu2G . ~B4!

Obviously a corresponding expression is valid for anA andB
polymer. These RPA single chain partition functions a
plugged into Eq.~26! leading to

G@U,W#

kBT
52

f̄ArV

N
ln

QA,0

nA
2

f̄BrV

N
ln

QB,0

nB
1

rVx

4

1
~f̄A2f̄B!rVW̄

2N
1

rV

4NxN
W̄2

1
rV

4NxN (
qÞ0

uWqu2

2
f̄ArV

2N2 (
qÞ0

S0~q!U~Wq1Uq!

2 U2

2
f̄BrV

2N2 (
qÞ0

S0~q!U~Uq2Wq!

2 U2

. ~B5!

Regarding only the wave vector dependent parts of the
energy we find

G@U,W#

kBT
52

rV

2N2 (
qÞ0

H FS0~q!

4
2

1

2xG uWqu2

1FS0~q!

4 G uUqu2J 2
rV

2N2

3 (
qÞ0

H f̄A2f̄B

2
S0~q!~UqW2q!J 1Ghom

52
rV

2N2 (
qÞ0

H FS0~q!

4
2

1

2x

2
1

4
~f̄A2f̄B!2S0~q!G uWqu2J

2
rV

2N2 (
qÞ0

H S0~q!

4
uUq1~f̄A2f̄B!Wqu2J

1Ghom. ~B6!

We use this free energy to evaluate the partition function
Eq. ~25!. Following the procedure we used before, we e
ploy a saddle point approximation with respect to the fieldU,

dF@U,W#

dU U
U*

50, Uq* 52~f̄A2f̄B!Wq . ~B7!
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e

e

e

f
-

Since the free energy is quadratic in the RPA approximat
the saddle point integration is equivalent to the functio
integration overU. This again leads us to an expression f
the free energyG@W# only depending on the external fiel
variableW,

G@W#

kBT
5

rV

2N2 (
qÞ0

F f̄Af̄BS0~q!2
1

2xG uWqu21Ghom.

~B8!

Now the averagêuWqu2& can be calculated,

^uWqu2&5
N2

rV

2x

122xf̄Af̄BS0~q!
. ~B9!

Using our result~39!

^uf̂Aq2f̂Bqu2&52
4

rVx
1

1

~xN!2
^uWqu2&, ~B10!

we express the density fluctuations in terms of the field fl
tuations and recover the well-known RPA expression@42#,

^uf̂Aq2f̂Bqu2&5
4

rV F 1

f̄AS0~q!
1

1

f̄BS0~q!
22xG21

[4SRPA~q!. ~B11!

Using the RPA single chain partition function~B4!, we cal-
culate

fA* ~r !52
f̄AV

QA

dQA

dWA~r !
5f̄A2

f̄A

N (
qÞ0

S0~q!WAqe
iq•r

~B12!

dfA* ~r !

dWA~r 8!
52

f̄A

NV (
qÞ0

S0~q!eiq•(r2r8). ~B13!

The last equation is equivalent to Eq.~A1! but due to the
particle conservation theq50 contribution has to be take
out of the sum.fA(q50) is just the average overall densi
f̄A that cannot change if the external field is altered. W
these expressions we obtain for the ‘‘literal’’ fluctuations
the EPD method according to Eq.~31!,

^uf̂Aq2f̂Bqu2&EPD

5^ufAq* 2fBq* u2&

2
N

rV2E d3r d3r 8 eiq•(r2r8)K dfA* ~r !

dWA~r 8!
1

dfB* ~r !

dWB~r 8!
L

5
8xS0

2~q!f̄A
2f̄B

2

rV@122xf̄Af̄BS0~q!#
1

S0~q!

rV

54SRPA~q!1
~124f̄Af̄B!S0~q!

rV
. ~B14!
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Generally, the deviation for the RPA result is of similar ma
nitude as the RPA structure factor itself. For a symme
quenchf̄A5 1

2 , however, we accidentally recover the RP
result. This example also illustrates that one can obtain
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